WANG Wenzhuo, ZHANG Chun, BO Ping, WANG Haoran, JIA Shuo, WANG Nana. Research on acoustic target strength of Larimichthys crocea in South China Sea based on Kirchhoff Approximation Model[J]. South China Fisheries Science, 2024, 20(6): 95-103. DOI: 10.12131/20240084
Citation: WANG Wenzhuo, ZHANG Chun, BO Ping, WANG Haoran, JIA Shuo, WANG Nana. Research on acoustic target strength of Larimichthys crocea in South China Sea based on Kirchhoff Approximation Model[J]. South China Fisheries Science, 2024, 20(6): 95-103. DOI: 10.12131/20240084

Research on acoustic target strength of Larimichthys crocea in South China Sea based on Kirchhoff Approximation Model

More Information
  • Received Date: April 23, 2024
  • Revised Date: July 08, 2024
  • Accepted Date: August 06, 2024
  • Available Online: August 14, 2024
  • Fisheries acoustics is as an important method for assessing fish abundance and distribution, but the acoustic assessment of Larimichthys crocea is often limited by insufficient Target strength (TS) data. Thus, we employed the Kirchhoff Approximation Model to measure and calculate the TS of cultured L. crocea in the South China Sea, and analyzed the relationship between its attitude inclination, body length (L), acoustic frequency and the target intensity, so as to supplement the target intensity data of L. crocea, and provide scientific references for the acoustic assessment of fishery resources in the South China Sea. The results show that at the frequencies of 38, 70, 120 and 200 kHz, the relationship between TS and body length can be approximated by TS=20lgL−74.12, TS=20lgL−74.34, TS=20lgL−71.98, and TS=20lgL−70.01, respectively. At the same frequencies, the TS of L. crocea increased with increasing body length, with higher values at angles of −20°−−10° and 10°−20°, aligning with their swim bladder orientation, movement posture and behavioral patterns. Moreover, when the frequency was over 70 kHz, the TS of L. crocea increased with increasing frequency but without a direct linear relationship.

  • [1]
    马彩华, 游奎, 李凤岐, 等. 南海鱼类生物多样性与区系分布[J]. 中国海洋大学学报 (自然科学版), 2006(4): 665-670.
    [2]
    粟丽, 许友伟, 张魁, 等. 南海区拖网渔业发展趋势及其对渔业资源的影响[J]. 南方水产科学, 2023, 19(4): 41-48. doi: 10.12131/20230027
    [3]
    田思泉, 柳晓雪, 花传祥, 等. 南海渔业资源状况及其管理挑战[J/OL]. 上海海洋大学学报. http://kns.cnki.net/kcms/detail/31.2024.S.20240307.1752.012.html.
    [4]
    赵欣. 南海渔业资源开发利用的时空特征及其治理[J]. 世界地理研究, 2022, 31(4): 762-772. doi: 10.3969/j.issn.1004-9479.2022.04.20222006
    [5]
    陈大刚, 张美昭. 中国海洋鱼类[M]. 青岛: 中国海洋大学出版社, 2015: 1231.
    [6]
    杨卫, 王春苗. 我国大黄鱼养殖产业发展研究[J]. 海洋开发与管理, 2020, 37(5): 72-75. doi: 10.3969/j.issn.1005-9857.2020.05.014
    [7]
    金显仕, 田洪林, 单秀娟. 我国近海渔业资源研究历程及展望[J]. 水产学报, 2023, 47(11): 122-131.
    [8]
    张丽媛, 杨剑虹, 熊清海, 等. 基于水声学的阳宗海鱼类行为特征及其资源评估[J]. 南方水产科学, 2024, 20(1): 110-119. doi: 10.12131/20230082
    [9]
    李哲, 朱文斌, 陈峰, 等. 近年我国渔业资源声学评估研究进展[J]. 浙江海洋大学学报(自然科学版), 2021, 40(1): 80-85, 92.
    [10]
    武智, 李跃飞, 朱书礼, 等. 基于渔业声学调查的珠江东塔产卵场鱼类栖息地适宜性研究[J]. 南方水产科学, 2023, 19(3): 11-18. doi: 10.12131/20220283
    [11]
    WOLFENKOEHLER W, LONG J M, GARY R, et al. Viability of side-scan sonar to enumerate Paddlefish, a large pelagic freshwater fish, in rivers and reservoirs[J]. Fish Res, 2023, 261: 106639. doi: 10.1016/j.fishres.2023.106639
    [12]
    BECKER A, LOWRY M B, FOWLER A M, et al. 2023 Hydroacoustic surveys reveal the distribution of mid-water fish around two artificial reef designs in temperate Australia[J]. Fish Res, 2023, 257: 106509. doi: 10.1016/j.fishres.2022.106509
    [13]
    DUNNING J, JANSEN T, FENWICK A J, et al. A new in-situ method to estimate fish target strength reveals high variability in broadband measurements[J]. Fish Res, 2023, 261: 106611. doi: 10.1016/j.fishres.2023.106611
    [14]
    万树杰, 陈新军, 童剑锋. 声散射模型在鱼类目标强度和种类识别研究中的应用及其进展[J]. 上海海洋大学学报, 2023, 32(1): 171-180.
    [15]
    RAUTUREAU C, GOULON C, GUILLARD J. In situ TS detections using two generations of echo-sounder, EK60 and EK80: the continuity of fishery acoustic data in lakes[J]. Fish Res, 2022, 249: 106237.
    [16]
    尚悦. 鱼种回波信号特征提取及分类方法研究[D]. 杭州: 浙江大学, 2019: 9-13.
    [17]
    钱金玉. 莱州湾海洋牧场鱼礁区渔业资源声学调查技术研究[D]. 大连: 大连海洋大学, 2023: 5-7.
    [18]
    杨毅. 鱼声散射特性分析及声学生物量监测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021: 13-14.
    [19]
    李佩杰. 尾明角灯鱼目标强度的模型法研究[D]. 大连: 大连海洋大学, 2016: 24-25.
    [20]
    吴晛天, 胡忠军, 葛航, 等. 基于基尔霍夫近似模型的鲢和鳙目标强度测量[J/OL]. 水产学报. http://kns.cnki.net/kcms/detail/31.1283.S.20220721.1344.002.html.
    [21]
    薛铭华. 西北太平洋鲐鱼声散射特征及在声学资源评估中的应用[D]. 上海: 上海海洋大学, 2022: 49-50.
    [22]
    李斌. 基于基尔霍夫近似模型的多鳞鱚 (Sillago sihama) 和红牙䱛 (Otolithes ruber) 目标强度测量研究[D]. 大连: 大连海洋大学, 2017: 44-45.
    [23]
    孙扬, 汤勇, 邢彬彬, 等. 基于基尔霍夫射线模型法的高白鲑目标强度研究[J]. 大连海洋大学学报, 2021, 36(2): 310-316.
    [24]
    王金明. 基于模型法对黄河鲤的目标强度的测量[D]. 大连: 大连海洋大学, 2018: 11-14.
    [25]
    KUSDINAR A, HWANG B K, SHIN H O. Determining the target strength bambood wrasse (Pseudolabrus japonicus) using Kirchhoff-Ray Mode[J]. J Korean Soc Fish Ocean Technol, 2014, 50(4): 427-434. doi: 10.3796/KSFT.2014.50.4.427
    [26]
    CLAY C S, HORNE J K. Acoustic models of fish: the Atlantic cod (Gadus morhua)[J]. J Acoust Soc Am, 1994, 96(3): 1661-1668. doi: 10.1121/1.410245
    [27]
    LOVE R H. Dorsal-aspect target strength of an individual fish[J]. J Acoust Soc Am, 1971, 49(3B): 816-823. doi: 10.1121/1.1912422
    [28]
    PROUD R, HANDEGARD N O, KLOSER R J, et al. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[J]. ICES J Mar Sci, 2019, 76(3): 718-733. doi: 10.1093/icesjms/fsy037
    [29]
    SIMMONDS J, MACLENAN D. Fisheries acoustics: theory and practice[M]. 2nd ed. Oxford: Blackwell Science, 2005: 229-230.
    [30]
    刘家富. 大黄鱼养殖与生物学[M]. 厦门: 厦门大学出版社, 2013: 295.
    [31]
    LI D L, HAO Y F, DUAN Y Q. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: a review[J]. Rev Aquac, 2020, 12(3): 1390-1411. doi: 10.1111/raq.12388
    [32]
    GAUTHIER S, HORNE J K. Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-Approximation Models[J]. Can J Fish Aquat Sci, 2004, 61(10): 1839-1850. doi: 10.1139/f04-117
    [33]
    WANZENBÖCK J, KUBECKA J, SAJDLOVA Z, et al. Hydroacoustic target strength vs. fish length revisited: data of caged, free-swimming European whitefish (Coregonus lavaretus L.) suggest a bi-phasic linear relationship under a limited range of tilt angles[J]. Fish Res, 2020, 229: 105620. doi: 10.1016/j.fishres.2020.105620
    [34]
    FOOTE K G. Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strengths[J]. J Acoust Soc Am, 1980, 67(6): 2084-2089. doi: 10.1121/1.384452
    [35]
    谢晓, 张辉, 孙立元, 等. 基于网箱控制法和模型法的长江4种淡水鱼目标强度研究[J]. 中国水产科学, 2020, 27(5): 536-546.
  • Related Articles

    [1]CHEN Guobao, CHENG Gao, NIU Lulian, ZOU Jianwei, YU Jie, CHEN Pimao. Application of fishery acoustic frequency difference technology in fishery resource assessment of marine ranching in southern sea area of Yintan, Guangxi[J]. South China Fisheries Science, 2025, 21(2): 38-46. DOI: 10.12131/20240129
    [2]SU Li, XU Youwei, ZHANG Kui, CHEN Zuozhi. Development trend of trawl fishery and its impact on fishery resources in South China Sea[J]. South China Fisheries Science, 2023, 19(4): 41-48. DOI: 10.12131/20230027
    [3]ZHANG Jun, QIU Yongsong, CHEN Zuozhi, ZHANG Peng, ZHANG Kui, FAN Jiangtao, CHEN Guobao, CAI Yancong, SUN Mingshuai. Advances in pelagic fishery resources survey and assessment in open South China Sea[J]. South China Fisheries Science, 2018, 14(6): 118-127. DOI: 10.12131/20180037
    [4]ZENG Lei, CHEN Guobao, YU Jie. Acoustic assessment of fishery resources and spatial distribution in Nan'ao Island area[J]. South China Fisheries Science, 2018, 14(2): 26-35. DOI: 10.3969/j.issn.2095-0780.2018.02.004
    [5]CAI Yancong, XU Shannan, CHEN Zuozhi, XU Youwei, JIANG Yan'e, YANG Changping. Current status of community structure and diversity of fishery resources in offshore northern South China Sea[J]. South China Fisheries Science, 2018, 14(2): 10-18. DOI: 10.3969/j.issn.2095-0780.2018.02.002
    [6]ZHANG Jun, ZHANG Peng, CHEN Zuozhi, CHEN Guobao, ZHANG Kui, XU Youwei, SUN Mingshuai. Biomass and distribution of carangoid fish resources in the offshore South China Sea[J]. South China Fisheries Science, 2016, 12(4): 38-48. DOI: 10.3969/j.issn.2095-0780.2016.04.005
    [7]LI Bin, CHEN Guobao, GUO Yu, CHEN Zuozhi, ZHANG Jun, WANG Dongxu. Hydroacoustic assessment of spatial-temporal distribution and biomass of fishery resources in the central South China Sea[J]. South China Fisheries Science, 2016, 12(4): 28-37. DOI: 10.3969/j.issn.2095-0780.2016.04.004
    [8]JIANG Yane, LIN Zhaojin, HUANG Zirong. Biodiversity of fishery resources in the continental shelf of northern South China Sea[J]. South China Fisheries Science, 2009, 5(5): 32-37. DOI: 10.3969/j.issn.1673-2227.2009.05.006
    [9]YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. The catch composition of light falling-net fishing and its impact on fishery resources in the northern South China Sea[J]. South China Fisheries Science, 2009, 5(4): 41-46. DOI: 10.3969/j.issn.1673-2227.2009.04.008
    [10]WANG Yuezhong, YUAN Yuwen. Changes of demersal trawl fishery resources in northern South China Sea as revealed by demersal trawling[J]. South China Fisheries Science, 2008, 4(2): 26-33.

Catalog

    Article views (467) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return