Citation: | ZHANG Hongjiao, ZHANG Cunxi, WANG Rui, WANG Ke, QIAO Qian. Freshness recognition of small yellow croaker based on image processing and improved DenseNet network[J]. South China Fisheries Science, 2024, 20(3): 133-142. DOI: 10.12131/20230241 |
Traditional freshness detection methods for aquatic products have problems such as great sample damage, trivial operation steps, low detection accuracy and efficiency. To solve these problems, in order to efficiently and accurately identify the freshness of small yellow croaker (Larimichthys polyactis), we proposed a freshness recognition model based on an improved DenseNet network. Firstly, we introduced the SENet attention mechanism module into each dense block module in the DenseNet network structure to achieve feature channel feature recalibration, enhance the network's extraction of current beneficial features, and eliminate irrelevant features. Secondly, we improved the first layer of the convolutional layer to enhance the network's non-linear ability and feature representation ability. To prevent the phenomenon of gradient vanishing during the training process, we used the PReLU activation function instead of the ReLU activation function of the original network. Finally, we conducted comparative experiments with the DenseNet network model and other classic neural network models. The experimental results show that the FishNet model based on transfer learning constructed in this paper has a recognition accuracy of 91.53% on the built L. polyactis freshness dataset. The model has high recognition accuracy and strong robustness, achieving efficient and accurate recognition of aquatic product freshness detection, and providing references for the development of intelligent freshness recognition systems.
[1] |
梁龙, 宋大德, 康中杰, 等. 基于耳石地标点法的南黄海和东海小黄鱼种群关系研究[J]. 南方水产科学, 2023, 19(6): 21-29.
|
[2] |
王腾, 高春霞, 王少琴, 等. 浙江南部近海小黄鱼肌肉脂肪酸组成及食源指示分析[J]. 上海海洋大学学报, 2021, 30(6): 992-1001.
|
[3] |
ZHOU T, DING Y X, BENJAKUL S, et al. Characterization of endogenous enzymes in sword prawn (Parapenaeopsis hardwickii) and their effects on the quality of muscle proteins during frozen storage[J]. LWT, 2023, 177: 152-165.
|
[4] |
KHUMNGERN S, NONTIPICHET N, THAVARUNGKUL P, et al. A simple colorimetric histamine sensor based on smartphone digital image processing for fish quality assessment[J]. J Food Compos Anal, 2024: 126105934.
|
[5] |
DOYEONG K, SUNGWOO P, HANSEUNG S. Fish freshness indicator for sensing fish quality during storage[J]. Foods (Basel, Switzerland), 2023, 12(9): 112-145.
|
[6] |
刘琳, 焦文娟, 赵甜甜. 电子鼻结合生物胺分析淡水鱼贮藏过程中的品质变化[J]. 现代食品科技, 2024, 40(1): 137-148.
|
[7] |
CHEN L H, WANG Y Y, ZHU C, et al. Effects of high-pressure processing on aquatic products with an emphasis on sensory evaluation[J]. Int J Food Sci Technol, 2022, 57(11): 6980-6996. doi: 10.1111/ijfs.16068
|
[8] |
El F A S, YOUNES A A, EMEL O, et al. Edible Xanthan/Propolis coating and its effect on physicochemical, microbial, and sensory quality indices in mackerel tuna (Euthynnus affinis) fillets during chilled storage[J]. Gels, 2022, 8(7): 42-113.
|
[9] |
ZHANG L J, ZHOU G X, CHEN A B, et al. Rapid computer vision detection of apple diseases based on AMCFNet[J]. Multimed Tools Appl, 2023, 82(29): 44697-44717. doi: 10.1007/s11042-023-15548-x
|
[10] |
TAHERI-GARAVAND A, FATAHI S, BANAN A, et al. Real-time nondestructive monitoring of Common Carp Fish freshness using robust vision-based intelligent modeling approaches[J]. Comp Electron Agric, 2019, 159: 16-27.
|
[11] |
CARLOS E M, MACIEL L A, TEIXEIRA A D. Computer vision and machine learning for tuna and salmon meat classification[J]. Informatics, 2021, 8(4): 61-70.
|
[12] |
焦俊, 王文周, 侯金波, 等. 基于改进残差网络的黑毛猪肉新鲜度识别方法[J]. 农业机械学报, 2019, 50(8): 364-371.
|
[13] |
AMIN U, SHAHZAD I M, SHAHZAD A, et al. Automatic fruits freshness classification using CNN and transfer learning[J]. Appl Sci, 2023, 13(14): 2812-2856.
|
[14] |
LIU Z. Soft-shell shrimp recognition based on an improved AlexNet for quality evaluations[J]. J Food Engin, 2020, 26: 50-73.
|
[15] |
BANWARI A, JOSHI R C, SENGAR N, et al. Computer vision technique for freshness estimation from segmented eye of fish image[J]. Ecol Inform, 2022, 69: 101602. doi: 10.1016/j.ecoinf.2022.101602
|
[16] |
李振波, 李萌, 赵远洋, 等. 基于改进VGG-19卷积神经网络的冰鲜鲳鱼新鲜度评估方法[J]. 农业工程学报, 2021, 37(22): 286-294.
|
[17] |
TAHERI-GARAVAND A, NASIRI A, BANAN A, et al. Smart deep learning-based approach for non-destructive freshness diagnosis of common carp fish[J]. J Food Engin, 2020, 278: 13-25.
|
[18] |
杨兆甜, 李方巍, 王震昊, 等. 食品颜色评价及在食品工业中的应用[J]. 食品工业科技, 2021, 42(24): 417-423.
|
[19] |
肖莹莹, 宋思园, 全育集, 等. 马头鱼挥发性盐基氮含量测定不确定度评定[J]. 广州化工, 2023, 51(7): 101-102, 106.
|
[20] |
邵宏宏, 周秀锦, 相兴伟, 等. 4种海产品冷藏期间挥发性盐基氮和生物胺含量变化[J]. 食品安全质量检测学报, 2022, 13(9): 2794-2801.
|
[21] |
HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks[J]. IEEE Comp So, 2016. DOI: 10.1109/CVPR.2017.243.
|
[22] |
张国忠, 吕紫薇, 刘浩蓬, 等. 基于改进DenseNet和迁移学习的荷叶病虫害识别模型[J]. 农业工程学报, 2023, 39(8): 188-196.
|
[23] |
PAN C Y, LIAN L Y, CHEN J Y, et al. FemurTumorNet: bone tumor classification in the proximal femur using DenseNet model based on radiographs[J]. J Bone Oncol, 2023, 42: 100491-100504.
|
[24] |
ELIF M, CANER O, DILARA O, et al. DenseNet-based ensemble network for land cover and land use classification of patch-based denoised SAR images[J]. Arab J Geosci, 2023, 16(11): 37-39.
|
[25] |
LI X, SHEN X, ZHOU Y X, et al. Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDS Net)[J]. PLoS One, 2020, 15(5): e0232127. doi: 10.1371/journal.pone.0232127
|
[26] |
MASOOD A, YE Z F. Improvement of joint optimization of masks and deep recurrent neural networks for monaural speech separation using optimized activation functions[J]. Chin J Acoust, 2020, 39(3): 420-432.
|
[27] |
JASNA C, MARKO K, ANGELINA T, et al. Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron[J]. Opt Lett, 2021, 46(9): 2003-2006. doi: 10.1364/OL.422930
|
[28] |
HIMANI K, YOTI A, MANOJ K. An improved method for text detection using Adam optimization algorithm[J]. Global Trans Proc, 2022, 3(1): 230-234. doi: 10.1016/j.gltp.2022.03.028
|
[29] |
ZHOU Y X, CHANG S, YAN F, et al. Balanced loss function for accurate surface defect segmentation[J]. Appl Sci, 2023, 13(2): 821-826. doi: 10.3390/app13020821
|
[30] |
杨魏华, 阮爱国, 黄国勇. 基于预训练GoogleNet模型和迁移学习的齿轮箱故障检测方法[J]. 机电工程, 2024, 40(2): 262-270.
|
[31] |
魏天琪, 郑雄胜, 李天兵, 等. 基于多组卷积神经网络的梭子蟹性别识别研究[J]. 南方水产科学, 2024, 20(1): 89-98.
|
[32] |
熊政, 车文刚, 保永莉, 等. 改进的MobileNetV3热轧钢带表面缺陷分类算法[J]. 陕西理工大学学报(自然科学版), 2023, 39(5): 30-37.
|