YANG Wei, SI Yuanyuan, XU Ruiwen, CHEN Xinghan. Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data[J]. South China Fisheries Science, 2023, 19(5): 123-133. DOI: 10.12131/20230086
Citation: YANG Wei, SI Yuanyuan, XU Ruiwen, CHEN Xinghan. Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data[J]. South China Fisheries Science, 2023, 19(5): 123-133. DOI: 10.12131/20230086

Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data

More Information
  • Received Date: April 24, 2023
  • Revised Date: June 28, 2023
  • Accepted Date: July 19, 2023
  • Available Online: August 12, 2023
  • In order to understand the genomic information of Tylorrhynchus heterochaetus and efficiently develop microsatellite markers, so as to guide the conservation of its germplasm resources and genetic improvement of new varieties, we conducted a whole-genome survey by using low depth high-throughput sequencing. A total of 57.48 Gb of clean data were generated after the quality control of raw data. K-mer analysis estimates that the genome size of T. heterochaetus was 759.53 Mb; the heterozygosity rate was 1.41%; the proportion of repetitive sequences was 45.92%. Preliminary assembly obtained 2 181 621 scaffolds with a total length of 840 375 821 bp. A total of 130 216 microsatellite loci were detected with a density of 154.9 loci per Mb. The repeated number of microsatellite units largely ranged from 4 to 18. The ratio of mononucleotide loci was the highest (35.00%), followed by those of dinucleotide (32.48%) and trinucleotide (14.42%) loci. AT/AT and AAT/ATT motifs were dominant in dinucleotide and trinucleotide loci, respectively, indicating an A/T dominance. Fifteen polymorphic loci were identified from 50 randomly selected primers, and 87 alleles were amplified in a T. heterochaetus population containing 30 individuals. The number of alleles per locus ranged from 2.000 to 12.000, with an mean of 5.800. The effective allele number (Ne) and expected heterozygosity (He) ranged from 1.164 to 6.713 and from 0.141 to 0.789, with means of 3.328 and 0.561, respectively. The polymorphic information content (PIC) ranged from 0.136 to 0.776, with a mean of 0.511. Thirteen loci were found to be highly or moderately polymorphic, having high practical value in genetic analysis. In conclusion, T. heterochaetus genome is a complex genome, and its microsatellites have a rich variety and high polymorphic potential. The results can provide effective marker resources for germplasm resource evaluation, population genetics and molecular breeding research.

  • [1]
    YANG Z Q, SUNIL C, JAYACHANDRAN M, et al. Anti-fatigue effect of aqueous extract of Hechong (Tylorrhynchus heterochaetus) via AMPK linked pathway[J]. Food Chem Toxicol, 2020, 135: 111043. doi: 10.1016/j.fct.2019.111043
    [2]
    苏跃朋, 黄啟, 崔阔鹏. 珠江河口区禾虫产业技术现状及增养殖效益分析[J]. 海洋与渔业, 2016(10): 64-67.
    [3]
    ZHANG W X, WANG Z X, GANESAN K, et al. Antioxidant activities of aqueous extracts and protein hydrolysates from marine worm Hechong (Tylorrhynchus heterochaeta)[J]. Foods, 2022, 11(13): 1837. doi: 10.3390/foods11131837
    [4]
    杨尉, 陈兴汉. 疣吻沙蚕-水稻生态复合种养技术要点及效益分析[J]. 南方农业, 2022, 16(20): 17-20, 24.
    [5]
    CHEN X H, YANG S, YANG W, et al. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam[J]. Zool Res, 2020, 41(1): 61-69. doi: 10.24272/j.issn.2095-8137.2020.006
    [6]
    CHEN X H, LI M M, LIU H P, et al. Mitochondrial genome of the polychaete Tylorrhynchus heterochaetus (Phyllodocida, Nereididae)[J]. Mitochondrial DNA A, 2016, 27(5): 3372-3373. doi: 10.3109/19401736.2015.1018226
    [7]
    CHEN H, LI X, WANG Y, et al. De novo transcriptomic characterization enables novel microsatellite identification and marker development in Betta splendens[J]. Life, 2021, 11(8): 803. doi: 10.3390/life11080803
    [8]
    孙效文, 张晓锋, 赵莹莹, 等. 水产生物微卫星标记技术研究进展及其应用[J]. 中国水产科学, 2008, 15(4): 689-703.
    [9]
    张永德, 文露婷, 罗洪林, 等. 卵形鲳鲹基因组调研及其SSR分子标记的开发应用[J]. 南方农业学报, 2020, 51(5): 983-994.
    [10]
    上官清, 陈昆慈, 刘海洋, 等. 斑鳢基因组中微卫星分布特征及野生种群遗传结构分析[J]. 南方水产科学, 2020, 16(3): 47-60.
    [11]
    LIU B H, SHI Y J, YUAN J Y, et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects[J]. Quant Biol, 2013, 35(s1-3): 62-67.
    [12]
    LUO R B, LIU B H, XIE Y L, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1): 18. doi: 10.1186/2047-217X-1-18
    [13]
    LALITHA S. Primer premier 5[J]. Biotech Softw Internet Rep, 2000, 1(6): 270-272. doi: 10.1089/152791600459894
    [14]
    刘玉萍, 王棋, 黄新芯, 等. 基于高通量测序的带鱼肌肉组织转录组微卫星信息分析[J]. 南方农业学报, 2022, 53(3): 725-734.
    [15]
    PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537-2539. doi: 10.1093/bioinformatics/bts460
    [16]
    TEMNYKH S, DECLERCK G, LUKASHOVA A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Res, 2001, 11(8): 1441-1452. doi: 10.1101/gr.184001
    [17]
    SIMAKOV O, MARLETAZ F, CHO S J, et al. Insights into bilaterian evolution from three spiralian genomes[J]. Nature, 2013, 493(7433): 526-531. doi: 10.1038/nature11696
    [18]
    TONG L, DAI S X, KONG D J, et al. The genome of medicinal leech (Whitmania pigra) and comparative genomic study for exploration of bioactive ingredients[J]. BMC Genom, 2022, 23(1): 76. doi: 10.1186/s12864-022-08290-5
    [19]
    MARTÍN-ZAMORA F M, LIANG Y, GUYNES K, et al. Annelid functional genomics reveal the origins of bilaterian life cycles[J]. Nature, 2023, 615(7950): 105-110. doi: 10.1038/s41586-022-05636-7
    [20]
    de OLIVEIRA A L, MITCHELL J, GIRGUIS P, et al. Novel insights on obligate symbiont lifestyle and adaptation to chemosynthetic environment as revealed by the giant tubeworm genome[J]. Mol Biol Evol, 2022, 39(1): msab347. doi: 10.1093/molbev/msab347
    [21]
    LI Y, TASSIA M G, WAITS D S, et al. Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi[J]. BMC Biol, 2019, 17(1): 91. doi: 10.1186/s12915-019-0713-x
    [22]
    JIN F, ZHOU Z L, GUO Q, et al. High-quality genome assembly of Metaphire vulgaris[J]. PeerJ, 2020, 8: e10313. doi: 10.7717/peerj.10313
    [23]
    ZAKAS C, HARRY N D, SCHOLL E H, et al. The genome of the poecilogonous Annelid Streblospio benedicti[J]. Genome Biol Evol, 2022, 14(2): evac008. doi: 10.1093/gbe/evac008
    [24]
    SHAO Y, WANG X B, ZHANG J J, et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration[J]. Nat Commun, 2020, 11(1): 2656. doi: 10.1038/s41467-020-16454-8
    [25]
    ZWARYCZ A S, NOSSA C W, PUTNAM N H, et al. Timing and scope of genomic expansion within Annelida: evidence from homeoboxes in the genome of the earthworm Eisenia fetida[J]. Genome Biol Evol, 2016, 8(1): 271-281. doi: 10.1093/gbe/evv243
    [26]
    KENNY N J, NAMIGAI E K O, MARLÉTAZ F, et al. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida)[J]. Mar Genom, 2015, 24(2): 139-146.
    [27]
    SUN Y N, SUN J, YANG Y, et al. Genomic signatures supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm Paraescarpia echinospica[J]. Mol Biol Evol, 2021, 38(10): 4116-4134. doi: 10.1093/molbev/msab203
    [28]
    高胜寒, 禹海英, 吴双阳, 等. 复杂基因组测序技术研究进展[J]. 遗传, 2018, 40(11): 944-963.
    [29]
    徐杰杰, 毕宜慧, 程景颢, 等. 中华绒螯蟹 (Eriocheir sinensis) 全基因组微卫星分布特征研究[J]. 基因组学与应用生物学, 2021, 40(Z2): 2422-2429.
    [30]
    梁霞, 王慧琪, 马宇璇, 等. 鲤鱼(Cyprinus carpio)全基因组微卫星分布特征研究[J]. 南京师大学报 (自然科学版), 2021, 44(3): 103-111.
    [31]
    ZHANG Q, ZHANG C S, YU Y, et al. Characteristic analysis of simple sequence repeats in the ridgetail white prawn Exopalaemon carinicauda genome and its application in parentage assignment[J]. J World Aquacult Soc, 2020, 51(3): 690-701. doi: 10.1111/jwas.12650
    [32]
    SRIVASTAVA S, KUSHWAHA B, PRAKASH J, et al. Development and characterization of genic SSR markers from low depth genome sequence of Clarias batrachus (Magur)[J]. J Genet, 2016, 95(3): 603-609. doi: 10.1007/s12041-016-0672-8
    [33]
    彭冶, 李杰, 王涛, 等. 瓦氏黄颡鱼全基因组微卫星的分布特征及其定位的初步研究[J]. 南方水产科学, 2022, 18(1): 90-98.
    [34]
    XU S Y, SONG N, XIAO S J, et al. Whole genome survey analysis and microsatellite motif identification of Sebastiscus marmoratus[J]. Biosci Rep, 2020, 40(2): BSR20192252. doi: 10.1042/BSR20192252
    [35]
    王九龙, 李洪莉, 尹硕, 等. 绿鳍马面鲀全基因组微卫星分布特征[J]. 烟台大学学报 (自然科学与工程版), 2022, 35(3): 285-293.
    [36]
    王佳佳, 王琼, 秦桢, 等. 凡纳滨对虾全基因组SSR标记开发及不同养殖群体的遗传多样性分析[J]. 水产学报, 2023, 47(6): 64-74.
    [37]
    SUN J X, PENG G H, XIONG L J, et al. Genome-wide SSR marker development and application in genetic diversity analysis of the red swamp crayfish, Procambarus clarkii (Girard, 1852) in China[J]. Crustaceana, 2021, 94(2): 189-205. doi: 10.1163/15685403-bja10076
    [38]
    倪守胜, 杨钰, 柳淑芳, 等. 基于高通量测序的虾夷扇贝基因组微卫星特征分析[J]. 渔业科学进展, 2018, 39(1): 107-113.
    [39]
    熊良伟, 王帅兵, 岳丽佳, 等. 宽体金线蛭基因组SSR序列特征分析及其分子标记开发[J]. 南方农业学报, 2018, 49(11): 2298-2303.
    [40]
    LIU H Y, ZHANG Y F, WANG G B, et al. Development and characterization of microsatellite markers in the earthworm Drawida gisti Michaelsen, 1931 and cross-amplification in two other congeners[J]. Mol Biol Rep, 2020, 47(10): 8265-8269. doi: 10.1007/s11033-020-05799-4
    [41]
    王斌, 孙静, 刘凌云, 等. 蛭类转录组中EST-SSR分析及抗凝血相关分子标记的挖掘[J]. 中草药, 2017, 48(1): 172-178.
    [42]
    MADUNA S N, VIVIAN-SMITH A, JÓNSDÓTTIR Ó D B, et al. Genome- and transcriptome-derived microsatellite loci in lumpfish Cyclopterus lumpus: molecular tools for aquaculture, conservation and fisheries management[J]. Sci Rep, 2020, 10(1): 559. doi: 10.1038/s41598-019-57071-w
    [43]
    李强勇, 李旻, 曾地刚, 等. 凡纳滨对虾微卫星分子标记的开发及不同养殖家系遗传多态性分析[J]. 南方农业学报, 2020, 51(2): 429-436.
    [44]
    WIERDL M, DOMINSKA M, PETES T D. Microsatellite instability in yeast: dependence on the length of the microsatellite[J]. Genetics, 1997, 146(3): 769-779. doi: 10.1093/genetics/146.3.769
    [45]
    JO E, LEE S J, CHOI E, et al. Whole genome survey and microsatellite motif identification of Artemia franciscana[J]. Biosci Rep, 2021, 41(3): BSR20203868. doi: 10.1042/BSR20203868
    [46]
    SCHLÖTTERER C, TAUTZ D. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Res, 1992, 20(2): 211-215. doi: 10.1093/nar/20.2.211
    [47]
    马军, 刘嘉鑫, 江智景, 等. 基于RNA-seq数据的密斑刺鲀SSR分子标记开发及鉴定[J]. 南方水产科学, 2020, 16(1): 127-136.
    [48]
    朱维岳, 周桃英, 钟明, 等. 基于遗传多样性和空间遗传结构的野生大豆居群采样策略[J]. 复旦学报 (自然科学版), 2006, 45(3): 321-327.
  • Cited by

    Periodical cited type(10)

    1. 孙阿君,丁炜东,曹丽萍,曹哲明,邴旭文. 氨氮胁迫对翘嘴鳜幼鱼抗氧化酶、消化酶活性及应激相关基因表达的影响. 水产科技情报. 2024(01): 44-51 .
    2. 王筱,冼健安,张秀霞,张泽龙,李军涛,郑佩华,吴恒梅,鲁耀鹏. 方斑东风螺人工养殖、环境生理和营养需求研究进展. 中国饲料. 2024(03): 83-88+117 .
    3. 张钰伟,赵旺,邓正华,黄星美,温为庚,孙敬锋,王瑞旋. 芽孢杆菌对方斑东风螺生长、存活、免疫及消化酶活性的影响. 南方水产科学. 2023(01): 106-115 . 本站查看
    4. 梁晶,邢诒炫,吕布,臧战,刘子岭,唐贤明,於锋,Hebert Ely Vasquez,战欣,郑兴,顾志峰. 底砂粒径对方斑东风螺生长、消化、抗氧化及底质的影响. 水产科技情报. 2023(03): 137-145 .
    5. 梅泊承,张晓东,赵淳朴,徐继林,王丹丽,郭春阳. 串联养殖模式下的凡纳滨对虾(Litopenaeus vannamei)与缢蛏(Sinonovacula constricta)生长特性、消化免疫及水生态效应. 海洋与湖沼. 2023(03): 907-920 .
    6. 赵旺,温为庚,谭春明,黄星美,杨蕊,陈明强,杨其彬,陈旭. 饥饿胁迫对猛虾蛄溶菌酶和消化酶活性的影响. 水产科技情报. 2022(01): 30-35 .
    7. 谭春明,赵旺,马振华,于刚. 红腹海参消化道指标、组织学和酶活性的季节变化. 南方水产科学. 2022(05): 39-45 . 本站查看
    8. 周建聪,顾志峰,叶丙聪,刘闯,羊玉梅,刘春胜,王爱民,石耀华. 盐度和氨氮对方斑东风螺存活和能量收支的影响. 海洋科学. 2022(10): 104-112 .
    9. 韩朝婕,陈屹洋,贺振楠,张严匀,周文礼,高金伟,贾旭颖. 氨氮胁迫对水产动物生长、消化酶及免疫影响的研究进展. 河北渔业. 2021(05): 32-35 .
    10. 丁炜东,曹丽萍,曹哲明,邴旭文. 氨氮胁迫对翘嘴鳜幼鱼鳃、消化道酶活力的影响. 南方水产科学. 2020(03): 31-37 . 本站查看

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return