Citation: | LIU Gang, HU Xiaojuan, SU Haochang, XU Wujie, XU Yu, WEN Guoliang, CAO Yucheng. Antagonism of Lactobacillus acidophilus against three Vibrio species and its influence on gut microbiota of Litopenaeus vannamei[J]. South China Fisheries Science, 2024, 20(2): 83-91. DOI: 10.12131/20230191 |
The use of probiotics is one of the non-antibiotic methods of preventing and controlling bacterial infections in aquaculture. Lactobacillus acidophilus can secrete antimicrobial substances in the body, which can inhibit the growth of harmful bacteria, regulate the micro-ecological balance of intestinal tract, and enhance the resistance to toxicity and disease. We analyzed the growth of L. acidophilus, Vibrio parahaemolyticus, V. harveyi and V. coralliilyticus under different oxygen environments and different media conditions, and systematically evaluated the antagonistic effect of L. acidophilus on the above mentioned Vibrio species, as well as the composition and changes of the intestinal flora of Litopenaeus vannamei, by using Oxford cup method and liquid culture method in addition with PCR fluorescence quantification and high throughput sequencing technology. The results show that anaero bic environment promoted the growth of V. harveyi significantly (P<0.05). Different ratios of media had a significant effect on the growth of all the four bacteria. L. acidophilus inhibited the growth of all the three Vibrio species effectively (P<0.05). In the background of intestinal flora of prawns, L. acidophilus inhibited the growth of V. parahaemolyticus significantly (P<0.05). The proportion of Vibrio spp. decreased significantly in the bacterial solution and supernatant groups compared with the control group. Beneficial genera of bacteria increased significantly in the high bacterial concentration group. The results indicate that L. acidophilus inhibits the growth of the above three Vibrio species in plate and liquid cultures, and inhibits the growth of V. parahaemolyticus in the background of prawn intestinal microbiota, being able to optimize the structure of microbiota.
[1] |
FAO. The State of World Fisheries and Aquaculture 2022[M]. Rome: FAO, 2022: 5-6.
|
[2] |
冯艳琴, 万夕和, 沈辉, 等. 水产动物副溶血性弧菌的拮抗菌研究进展[J]. 微生物学杂志, 2021, 41(1): 99-106. doi: 10.3969/j.issn.1005-7021.2021.01.013
|
[3] |
YILMAZ S, YILMAZ E, DAWOOD M, et al. Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: a review[J]. Aquaculture, 2022, 547: 737514. doi: 10.1016/j.aquaculture.2021.737514
|
[4] |
INA-SALWANY M Y, AL-SAARI N, MOHAMAD A, et al. Vibriosis in fish: a review on disease development and prevention[J]. J Aquat Anim Health, 2019, 31(1): 3-22. doi: 10.1002/aah.10045
|
[5] |
MOHAMAD N, AMAL M N A, YASIN I S M, et al. Vibriosis in cultured marine fishes: a review[J]. Aquaculture, 2019, 512: 734289. doi: 10.1016/j.aquaculture.2019.734289
|
[6] |
GALAVIZ-SILVA L, CÁZARES-JARAMILLO G E, IBARRA-GÁMEZ J C, et al. Assessment of probiotic bacteria from marine coasts against Vibrio parahaemolyticus (AHPND strains) in Litopenaeus vannamei[J]. Aquac Res, 2021, 52(12): 6396-6409. doi: 10.1111/are.15505
|
[7] |
YANG Y Y, SONG W J, LIN H, et al. Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis[J]. Environ Int, 2018, 116: 60-73. doi: 10.1016/j.envint.2018.04.011
|
[8] |
李十盛, 高会, 赵富强, 等. 水产养殖环境中抗生素抗性基因的研究进展[J]. 中国环境科学, 2021, 41(11): 5314-5325. doi: 10.3969/j.issn.1000-6923.2021.11.040
|
[9] |
WANG A R, RAN C, WANG Y B, et al. Use of probiotics in aquaculture of China: a review of the past decade[J]. Fish Shellfish Immunol, 2019, 86: 734-755. doi: 10.1016/j.fsi.2018.12.026
|
[10] |
BONDAD-REANTASO M G, MACKINNON B, KARUNASAGAR I, et al. Review of alternatives to antibiotic use in aquaculture[J]. Rev Aquac, 2023, 15(4): 1421-1451. doi: 10.1111/raq.12786
|
[11] |
PEREZ-SANCHEZ T, MORA-SANCHEZ B, BALCAZAR J L. Biological approaches for disease control in aquaculture: advantages, limitations and challenges[J]. Trends Microbiol, 2018, 26(11): 896-903. doi: 10.1016/j.tim.2018.05.002
|
[12] |
DAWOOD M A O, KOSHIO S, ABDEL-DAIM M M, et al. Probiotic application for sustainable aquaculture[J]. Rev Aquac, 2019, 11(3): 907-924. doi: 10.1111/raq.12272
|
[13] |
GATESOUPE F J. The use of probiotics in aquaculture[J]. Aquaculture, 1999, 180(1): 147-165.
|
[14] |
李军亮, 杨奇慧, 谭北平, 等. 嗜酸乳杆菌对斜带石斑鱼幼鱼生长、消化性能和抗病力的影响[J]. 水生生物学报, 2019, 43(5): 992-1000. doi: 10.7541/2019.118
|
[15] |
MOHAMMADIAN T, NASIRPOUR M, TABANDEH M R, et al. Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection[J]. Fish Shellfish Immunol, 2019, 86: 269-279. doi: 10.1016/j.fsi.2018.11.052
|
[16] |
ABIDIN Z, HUANG H T, HU Y F, et al. Effect of dietary supplementation with Moringa oleifera leaf extract and Lactobacillus acidophilus on growth performance, intestinal microbiota, immune response, and disease resistance in whiteleg shrimp (Penaeus vannamei)[J]. Fish Shellfish Immunol, 2022, 127: 876-890. doi: 10.1016/j.fsi.2022.07.007
|
[17] |
陆晓岑. 三种海水病原菌的拮抗菌筛选及其作用机制研究[D]. 大连: 大连海洋大学, 2022: 15-16.
|
[18] |
王文君. 一株弧菌拮抗菌的鉴定、抑菌特性及应用效果的初步研究[D]. 青岛: 中国海洋大学, 2015: 19-20.
|
[19] |
BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6(1): 90. doi: 10.1186/s40168-018-0470-z
|
[20] |
窦晓明, 孙高英, 单虎. 乳酸菌胞外产物对副溶血弧菌抑制作用的研究[J]. 海洋科学, 2007(8): 11-14. doi: 10.3969/j.issn.1000-3096.2007.08.003
|
[21] |
YANG Z Q, JIN C J, GAO L, et al. Alleviating effects of Lactobacillus strains on pathogenic Vibrio parahaemolyticus-induced intestinal fluid accumulation in the mouse model[J]. FEMS Microbiol Lett, 2013, 339(1): 30-38. doi: 10.1111/1574-6968.12050
|
[22] |
AMIRI S, REZAEI MOKARRAM R, SOWTI KHIABANI M, et al. Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens[J]. LWT, 2022, 153: 112449. doi: 10.1016/j.lwt.2021.112449
|
[23] |
EVANGELISTA A G, CORREA J A F, dos SANTOS J V G, et al. Cell-free supernatants produced by lactic acid bacteria reduce Salmonella population in vitro[J]. Microbiology, 2021, 167(11): 001102.
|
[24] |
洪梅, 刘样珍, 史宝军. 一株嗜酸乳杆菌的抑菌效果及相关特性分析[J]. 黑龙江畜牧兽医, 2017(18): 122-124.
|
[25] |
梁晓明, 曾嘉颖, 王安利, 等. 1株副干酪乳酸菌S-4对致病弧菌的抑制特性研究[J]. 华南师范大学学报(自然科学版), 2019(5): 1-9.
|
[26] |
熊骏, 韩瑞娜, 张忠华, 等. 豆豉中高效抑菌活性乳酸菌的筛选及其抑菌研究[J]. 中国微生态学杂志, 2011, 23(6): 485-489.
|
[27] |
郭凤茹. 罗非鱼肠道乳酸菌的益生特性研究[D]. 上海: 上海海洋大学, 2019: 6-24.
|
[28] |
ZHANG Z W, LYU J L, PAN L, et al. Roles and applications of probiotic Lactobacillus strains[J]. Appl Microbiol Biotechnol, 2018, 102(19): 8135-8143. doi: 10.1007/s00253-018-9217-9
|
[29] |
崔磊, 郭伟国. 乳酸菌产生的抑菌物质及其作用机制[J]. 食品安全质量检测学报, 2018, 9(11): 2578-2584. doi: 10.3969/j.issn.2095-0381.2018.11.002
|
[30] |
王洋, 王竞儒, 罗云龙, 等. 乳酸链球菌素与乳酸对维氏气单胞菌的协同抑制和损伤作用[J]. 大连海洋大学学报, 2020, 35(6): 830-837.
|
[31] |
SERVIN A L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens[J]. FEMS Microbiol Rev, 2004, 28(4): 405-440. doi: 10.1016/j.femsre.2004.01.003
|
[32] |
李佳徽, 王明阳, 田相利, 等. 三种不同乳酸菌对凡纳滨对虾生长、抗病力及肠道菌群结构的影响[J]. 中国海洋大学学报(自然科学版), 2021, 51(4): 44-54.
|
[33] |
LI C Q, TIAN Y, WANG L, et al. Effects of replacing fishmeal by raw or Lactobacillus acidophilus-fermented soybean meal on growth, intestinal digestive and immune-related enzyme activities, morphology, and microbiota in turbot (Scophthalmus maximus L.)[J]. Aquac Nutr, 2022: 2643235. https://doi.org/10.1155/2022/2643235.
|
[34] |
WANG X D, ZHOU Z C, GUAN X Y, et al. Effects of dietary Lactobacillus acidophilus and tussah immunoreactive substances supplementation on physiological and immune characteristics of sea cucumber (Apostichopus japonicus)[J]. Aquaculture, 2021, 542: 736897. doi: 10.1016/j.aquaculture.2021.736897
|
[1] | CAI Runji, PENG Xiaohong, YE Shuangfu, ZHANG Tianchen, GAO Yuefang, LYU Junlin. Automatic counting of shrimp larvae based on probability density map model generated from front end and back end[J]. South China Fisheries Science, 2025, 21(1): 173-184. DOI: 10.12131/20240212 |
[2] | XU Bo, YUAN Hongchun. Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network[J]. South China Fisheries Science, 2024, 20(6): 145-154. DOI: 10.12131/20240200 |
[3] | ZHANG Hongjiao, ZHANG Cunxi, WANG Rui, WANG Ke, QIAO Qian. Freshness recognition of small yellow croaker based on image processing and improved DenseNet network[J]. South China Fisheries Science, 2024, 20(3): 133-142. DOI: 10.12131/20230241 |
[4] | WEI Tianqi, ZHENG Xiongsheng, LI Tianbing, WANG Richeng. Multi-group convolutional neural network for gender recognition of Portunus tritubereulatus[J]. South China Fisheries Science, 2024, 20(1): 89-98. DOI: 10.12131/20230107 |
[5] | ZHANG Jiaqi, XIE Yonghe, LI Detang, GAO Weipeng, CHEN Qing, WANG Jun, WANG Yunjie, HONG Yongqiang. Structural design and research of underwater robot for aquaculture ship operation[J]. South China Fisheries Science, 2024, 20(1): 11-24. DOI: 10.12131/20230192 |
[6] | SHEN Xiashuang, AO Qiuwei, GAN Xi, TANG Yun, LUO Yongju, LIANG Junneng, ZHU Jiajie. Estimation of disease resistance and growth in F5 generation families of GIFT tilapia[J]. South China Fisheries Science, 2018, 14(3): 83-90. DOI: 10.3969/j.issn.2095-0780.2018.03.010 |
[7] | ZHENG Qiaoling, FAN Wei, ZHANG Shengmao, ZHANG Heng, WANG Xiaoxuan, GUO Ganggang. Identification of fishing type from VMS data based on artificial neural network[J]. South China Fisheries Science, 2016, 12(2): 81-87. DOI: 10.3969/j.issn.2095-0780.2016.02.012 |
[8] | WU Fengxia, LI Chunhou, DAI Ming. Application of artificial neural networks ocean sciences[J]. South China Fisheries Science, 2009, 5(1): 75-80. DOI: 10.3969/j.issn.1673-2227.2009.01.013 |
[9] | SU Xin-hong, SHEN Chang-chun, HUANG Pei-min. A general evaluation of fishery economic power for county areas in Fujian Province[J]. South China Fisheries Science, 2005, 1(5): 37-43. |
[10] | LI Zhan-dong, LIN Qin. The application of BP artificial neural networks on assessment of seawater quality at Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(4): 47-54. |