LAN Kunpeng, WU Guangde, WANG Jun, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua. Effects of dietary supplementation of inulin on survival, growth and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2022, 18(5): 55-65. DOI: 10.12131/20220082
Citation: LAN Kunpeng, WU Guangde, WANG Jun, CHEN Xu, WANG Yun, ZHOU Chuanpeng, LIN Heizhao, MA Zhenhua. Effects of dietary supplementation of inulin on survival, growth and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2022, 18(5): 55-65. DOI: 10.12131/20220082

Effects of dietary supplementation of inulin on survival, growth and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)

More Information
  • Received Date: March 27, 2022
  • Revised Date: April 21, 2022
  • Accepted Date: April 27, 2022
  • Available Online: August 28, 2022
  • Prebiotics, such as inulin, can promote the growth of beneficial bacteria in the intestinal tract of animals, improve immunity, survival rate and growth performance, and have broad application prospects in the field of animal nutrition and feed. We conducted an 8-week feeding experiment to investigate the effects of dietary inulin on survival, growth performance and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus) [Initial average body mass of (18.85±0.02) g]. Six isonitrogenous and isolipidic basal diets were supplemented with 0 (Control), 0.3%, 0.6%, 0.9%, 1.2% and 1.5% inulin. Results show that 1.5% inulin group had the highest survival rate, significantly higher than the other groups (P<0.05), and no significant difference was found among the other groups (P>0.05). The specific growth rate was the highest in 1.5% inulin group. The hepatosomatic index and intraperitoneal fat were significantly lower in inulin-included groups. The hepatosomatic index first decreased then increased with increasing levels of dietary inulin, with the lowest value in 0.9% inulin group. 1.2% and 1.5% inulin groups had significantly lower hepatosomatic index than the other groups. The fish fed with inulin-included diets had higher gut villus height than that in the control group. Proteobacteria, Firmicutes and Bacteroidetes were the predominant species of intestinal microbiota communities, but their abundance varied. The highest and lowest abundances of Proteobacteria were observed in 1.5% and 0.6% inulin groups, respectively. 0.6% inulin group had the highest abundances of Bacteroidetes and Firmicutes. The lowest abundances of Firmicutes and Bacteroidetes were found in 1.5% inulin group and control group, respectively. The predominant species at genus level were Achromobacter, Brevundimonas and Pandoraea. Achromobacter was most abundant in 1.5% inulin group. 0.6% inulin group had the lowest abundances of Achromobacter, Brevundimonas, Pandoraea, Delftia and Sphingomonas. Inulin supplementation increased the abundances of bacteria that are beneficial to the host such as Achromobacter and Prevotella. The results indicate that dietary supplementation of inulin at 1.5% can improve the survival and growth performance of T. ovatus.
  • [1]
    农业农村部渔业渔政管理局. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22.
    [2]
    LI G, ZHAO D, LU H, et al. Identification and phylogenetic analysis of Vibrio vulnificus isolated from diseased Trachinotus ovatus in cage mariculture[J]. Aquaculture, 2006, 261(1): 17-25. doi: 10.1016/j.aquaculture.2006.07.013
    [3]
    ZHANG Q, YU H R, TONG T, et al. Dietary supplementation of Bacillus subtilis and fructooligosaccharide enhance the growth, non-specific immunity of juvenile ovate pompano, Trachinotus ovatus and its disease resistance against Vibrio vulnificus[J]. Fish Shellfish Immunol, 2014, 38(1): 7-14. doi: 10.1016/j.fsi.2014.02.008
    [4]
    WANG A R, RAN C, RING Ø E, et al. Progress in fish gastrointestinal microbiota research[J]. Rev Aquac, 2018, 10: 626-640. doi: 10.1111/raq.12191
    [5]
    ZHOU L, LI H, QIN J G, et al. Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at low salinity[J]. Aquaculture, 2020, 518: 734847.
    [6]
    ROBERFROID M. Prebiotics: the concept revisited[J]. J Nutr, 2007, 137: 830S-837S. doi: 10.1093/jn/137.3.830S
    [7]
    郭志勋, 林黑着, 徐力文, 等. 饲料中添加半乳低聚糖对军曹鱼生长、部分血清免疫和生化因子的影响[J]. 南方水产科学, 2011, 7(1): 56-61. doi: 10.3969/j.issn.2095-0780.2011.01.009
    [8]
    APOLINARIO A C, DAMASCENO B P G, BELTRAO N E, et al. Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology[J]. Carbohydr Polym, 2014, 101: 368-378. doi: 10.1016/j.carbpol.2013.09.081
    [9]
    SLAVIN J. Fiber and prebiotics: mechanisms and health benefits[J]. Nutrients, 2013, 5(4): 1417-1435. doi: 10.3390/nu5041417
    [10]
    TUFARELLI V, LAUDADIO V. An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics[J]. J Exp Biol Agric Sci, 2016, 4(3S): 273-278. doi: 10.18006/2016.4(3S).273.278
    [11]
    MAUMELA P, RENSBURG E, CHIMPHANGO A F A, et al. Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L. )[J]. J Food Sci Technol, 2020, 57(2): 775-786. doi: 10.1007/s13197-019-04110-z
    [12]
    奚文博, 严昌国, 崔莲花. 益生元-菊粉在动物营养中的研究进展[J]. 饲料研究, 2017(21): 8-12, 21.
    [13]
    WICHIENCHOT S, THAMMARUTWASIK P, JONGJAREONRAK A, et al. Extraction and analysis of prebiotics from selected plants from southern Thailand[J]. Songklanakarin J Sci Technol, 2011, 33(5): 517-523.
    [14]
    GIBSON G R, ROBERFROID M B. Dietary modulation of the colonic microbiota: introducing the concept of prebiotics[J]. J Nutr, 1995, 125: 1401-1412. doi: 10.1093/jn/125.6.1401
    [15]
    GIBSON G R, PROBERT H M, van LOO J A E, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics[J]. Nutr Res Rev, 2004, 17(2): 257-272.
    [16]
    WANG S W, WANG H C, WANG W, et al. Enhancement of the resistance of tilapia and grass carp to experimental Aeromonas hydrophila and Edwardsiella tarda infections by several polysaccharides[J]. Comp Immunol Microbiol Infect Dis, 1997, 20(3): 261-270. doi: 10.1016/S0147-9571(96)00035-5
    [17]
    MAHIOUS A S, GATESOUPE F J, HERVI M, et al. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758)[J]. Aquac Int, 2005, 14(3): 219-229.
    [18]
    ALI S S R, AMBASANKAR K, NANDAKUMAR S, et al. Effect of dietary prebiotic inulin on growth, body composition and gut microbiota of Asian seabass (Lates calcarifer)[J]. Anim Feed Sci Technol, 2016, 217: 87-94.
    [19]
    ESHAGHZADEH H, HOSEINIFAR S H, VAHABZADEH H, et al. The effects of dietary inulin on growth performances, survival and digestive enzyme activities of common carp (Cyprinus carpio) fry[J]. Aquac Nutr, 2015, 21(2): 242-247. doi: 10.1111/anu.12155
    [20]
    MO W, CHENG Z, CHOI W, et al. Use of food waste as fish feeds: effects of prebiotic fibers (inulin and mannanoligosaccharide) on growth and non-specific immunity of grass carp (Ctenopharyngodon idella)[J]. Environ Sci Pollut Res, 2015, 22(22): 17663-17671. doi: 10.1007/s11356-015-4971-z
    [21]
    TIENGTAM N, KHEMPAKA S, PAENGKOUM P, et al. Effects of inulin and Jerusalem artichoke (Helianthus tuberosus) as prebiotic ingredients in the diet of juvenile Nile tilapia (Oreochromis niloticus)[J]. Anim Feed Sci Technol, 2015, 207: 120-129. doi: 10.1016/j.anifeedsci.2015.05.008
    [22]
    OLSEN R E, MYKLEBUST R, KRYVI H, et al. Damaging effect of dietary inulin on intestinal enterocytes in Arctic charr (Salvelinus alpinus L. )[J]. Aquac Res, 2001, 32(11): 931-934. doi: 10.1046/j.1365-2109.2001.00626.x
    [23]
    IBRAHEM M D, FATHI M, MESALHY S, et al. Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2010, 29(2): 241-246. doi: 10.1016/j.fsi.2010.03.004
    [24]
    ORTIZ L T, REBOLE A, VELASCO S, et al. Effects of inulin and fructooligosaccharides on growth performance, body chemical composition and intestinal microflora of farmed rainbow trout (Oncorhynchus mykiss)[J]. Aquac Nutr, 2013, 19(4): 475-482. doi: 10.1111/j.1365-2095.2012.00981.x
    [25]
    吴越. 三种益生元对珍珠龙胆石斑鱼和卵形鲳鲹生长及免疫的影响[D]. 海口: 海南大学, 2019: 36-47.
    [26]
    BAKKE-MCKELLEP A M, PENN M H, SALAS P M, et al. Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microflora and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L. )[J]. Br J Nutr, 2007, 97(4): 699-713. doi: 10.1017/S0007114507381397
    [27]
    BURR G, HUME M, RICKE S, et al. In vitro and in vivo evaluation of the prebiotics GroBiotic-A, inulin, mannanoligosaccharide, and galactooligosaccharide on the digestive microflora and performance of hybrid striped bass (Morone chrysops×Morone saxatilis)[J]. Microb Ecol, 2010, 59(1): 187-198. doi: 10.1007/s00248-009-9597-6
    [28]
    蒋飞, 严银龙, 施永海. 饲料中添加菊粉对暗纹东方鲀幼鱼生长、消化及非特异性免疫能力的影响[J]. 动物学杂志, 2020, 55(5): 599-605.
    [29]
    REZA A, ABDOLMAJID H, ABBAS M, et al. Effect of dietary prebiotic inulin on growth performance, intestinal micromicroflora, body composition and hematological parameters of iuvenile Beluga, Huso huso (Linnaeus, 1758)[J]. J World Aquac Soc, 2009, 40(6): 771-779. doi: 10.1111/j.1749-7345.2009.00297.x
    [30]
    李会峰. 水飞蓟素、菊粉和β-葡聚糖对缓解凡纳滨对虾低盐应激的效应研究[D]. 上海: 华东师范大学, 2019: 63-64.
    [31]
    LIU F, PRABHAKAR M, JU J, et al. Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials[J]. Eur J Clin Nutr, 2017, 71(1): 9-20. doi: 10.1038/ejcn.2016.156
    [32]
    YU X R, FU C S, CUI Z C, et al. Inulin and isomalto-oligosaccharide alleviate constipation and improve reproductive performance by modulating motility-related hormones, short-chain fatty acids, and feces microflora in pregnant sows[J]. J Anim Sci, 2021, 99(10): 1-9.
    [33]
    CASPARY W F. Physiology and pathophysiology of intestinal absorption[J]. Am J Clin Nutr, 1992, 55(Suppl 1): 299S-308S.
    [34]
    BLOTTIERE H M, BUECHER B, GALMICHE J P, et al. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation[J]. Proc Nutr Soc, 2003, 62(1): 101-106. doi: 10.1079/PNS2002215
    [35]
    REHMAN H, ROSENKRANZ C, BOHM J, et al. Dietary inulin affects the morphology but not the sodium-dependent glucose and glutamine transport in the jejunum of broilers[J]. Poult Sci, 2007, 86(1): 118-122. doi: 10.1093/ps/86.1.118
    [36]
    NABIZADEH A. The effect of inulin on broiler chicken intestinal micromicroflora, gut morphology, and performance[J]. J Anim Feed Sci, 2012, 21(4): 725-734. doi: 10.22358/jafs/66144/2012
    [37]
    CEREZUELA R, FUMANAL M, TAPIA-PANIAGUA S T, et al. Changes in intestinal morphology and microflora caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens[J]. Fish Shellfish Immunol, 2013, 34(5): 1063-1070. doi: 10.1016/j.fsi.2013.01.015
    [38]
    马启伟, 郭梁, 刘波, 等. 牛磺酸对卵形鲳鲹肠道微生物及免疫功能的影响[J]. 南方水产科学, 2021, 17(2): 87-96. doi: 10.12131/20200193
    [39]
    DAI J H, LI Y X, YANG P, et al. Citric acid as a functional supplement in diets for juvenile turbot, Scophthalmus maximus L. : effects on phosphorus discharge, growth performance, and intestinal health[J]. Aquaculture, 2018, 495: 643-653. doi: 10.1016/j.aquaculture.2018.04.004
    [40]
    BUTT R L, VOLKOFF H. Gut microbiota and energy homeostasis in fish[J]. Front Endocrinol, 2019, 10: 9. doi: 10.3389/fendo.2019.00009
    [41]
    SHEN J F, LIU H Y, TAN B P, et al. Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2020, 26(4): 1119-1130. doi: 10.1111/anu.13069
    [42]
    廖庆钊, 陈福艳, 覃雅, 等. 投喂乙醇假丝酵母对罗非鱼生长、免疫和肠道菌群的影响[J]. 南方水产科学, 2021, 17(5): 10-17. doi: 10.12131/20200258
    [43]
    YIN Z Y, LIU Q D, LIU Y T, et al. Early life intervention using probiotic Clostridium butyricum improves intestinal development, immune response, and gut microbiota in large yellow croaker (Larimichthys crocea) larvae[J]. Front Immunol, 2021, 12: 640767. doi: 10.3389/fimmu.2021.640767
    [44]
    RING Ø E, OLSEN R E, GIFSTAD T, et al. Prebiotics in aquaculture: a review[J]. Aquac Nutr, 2010, 16(2): 117-136. doi: 10.1111/j.1365-2095.2009.00731.x
    [45]
    HOSEINIFAR S H, ESTEBAN M A, CUESTA A, et al. Prebiotics and fish immune response: a review of current knowledge and future perspectives[J]. Rev Fish Sci Aquac, 2015, 23(4): 315-328. doi: 10.1080/23308249.2015.1052365
    [46]
    RODRIGUEZ J, HIEL S, NEYRINCK A M, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients[J]. Gut, 2020, 69(11): 1975-1987. doi: 10.1136/gutjnl-2019-319726
    [47]
    XUN P W, LIN H Z, WANG R X, et al. Effects of dietary lipid levels on growth performance, plasma biochemistry, lipid metabolism and intestinal microbiota of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Nutr, 2021, 27(5): 1683-1698. doi: 10.1111/anu.13307
    [48]
    SHIN N R, WHON T W, BAE J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends Biotechnol, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011
    [49]
    柴英辉, 高菲, 王金锋, 等. 仿刺参 (Apostichopus japonicus) 肠道菌群的地域性差异与共性研究[J]. 海洋与湖沼, 2019, 50(5): 1127-1137. doi: 10.11693/hyhz20190200044
    [50]
    ARON-WISNEWSKY J, GABORIT B, DUTOUR A, et al. Gut microbiota and non-alcoholic fatty liver disease: new insights[J]. Clin Microbiol Infect, 2013, 19(4): 338-348. doi: 10.1111/1469-0691.12140
    [51]
    PU G, LI P H, DU T R, et al. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig[J]. Front Microbiol, 2020, 11: 533. doi: 10.3389/fmicb.2020.00533
    [52]
    THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and gut Bacteroidetes: the food connection[J]. Front Microbiol, 2011, 2: 93.
    [53]
    PAONE P, CANI P D. Mucus barrier, mucins and gut microbiota: the expected slimy partners?[J]. Gut, 2020, 69(12): 2232-2243. doi: 10.1136/gutjnl-2020-322260
    [54]
    SPILKER T, VANDAMME P, LIPUMA J J. Identification and distribution of Achromobacter species in cystic fibrosis[J]. J Cyst Fibros, 2013, 12(3): 298-301. doi: 10.1016/j.jcf.2012.10.002
    [55]
    RYAN M P, PEMBROKE J T. Brevundimonas spp. : emerging global opportunistic pathogens[J]. Virulence, 2018, 9(1): 480-493. doi: 10.1080/21505594.2017.1419116
    [56]
    JOHNSON L N, HAN J Y, MOSKOWITZ S M, et al. Pandoraea bacteremia in a cystic fibrosis patient with associated systemic illness[J]. Pediatr Infect Dis J, 2004, 23(9): 881-882. doi: 10.1097/01.inf.0000136857.74561.3c
    [57]
    梁超. 饲料中添加二甲酸钾、低聚木糖和菊粉对刺参的生长、免疫和抗灿烂弧菌感染能力的影响[D]. 青岛: 中国海洋大学, 2011: 67-68.
    [58]
    WANG Y, NAN X M, ZHAO Y G, et al. Consumption of supplementary inulin modulates milk microbiota and metabolites in dairy cows with subclinical mastitis[J]. Appl Environ Microbiol, 2022, 88(4): e0205921.
  • Related Articles

    [1]SU Li, XU Shannan, LI Chunhou, CHEN Zuozhi. Phytoplankton community composition and its environmental impact factors in Pearl River Estuary during wet season[J]. South China Fisheries Science, 2025, 21(1): 46-54. DOI: 10.12131/20240143
    [2]SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025
    [3]SUN Ye, LIU Yong, LI Chunhou, WU Peng, LI Yafang, SHU Liming, LIN Lin, XIAO Yayuan, TANG Guanglong. Community characteristics and influencing factors of macrobenthos in Pearl River Estuary[J]. South China Fisheries Science, 2023, 19(5): 39-47. DOI: 10.12131/20230048
    [4]WU Peng, LIU Yong, XIAO Yayuan, XIE Yufang, TANG Guanglong, LIN Lin, WANG Teng, LI Chunhou. Evaluation of fisheries ecological environment in adjacent sea areas of Wanshan Archipelago in Pearl River Estuary in spring[J]. South China Fisheries Science, 2022, 18(5): 1-8. DOI: 10.12131/20210332
    [5]LIU Yan, WU Zhongxin, YANG Changping, SHAN Binbin, LIU Shengnan, SUN Dianrong. Ecological carrying capacity of six species of stock enhancement in Pearl River estuary based on Ecopath model[J]. South China Fisheries Science, 2019, 15(4): 19-28. DOI: 10.12131/20180265
    [6]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [7]YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. Analysis of the catch composition of small shrimp-beam-trawl net in shallow waters of Pearl River Estuary, China[J]. South China Fisheries Science, 2008, 4(6): 70-77.
    [8]GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15.
    [9]WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45.
    [10]YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34.

Catalog

    Article views (689) PDF downloads (82) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return