XIE Zhichao, LIN Lin, XIAO Yayuan, LIU Yong, LI Chunhou. Species composition and grazing of microzooplankton in central South China Sea in autumn of 2016[J]. South China Fisheries Science, 2018, 14(3): 40-48. DOI: 10.3969/j.issn.2095-0780.2018.03.005
Citation: XIE Zhichao, LIN Lin, XIAO Yayuan, LIU Yong, LI Chunhou. Species composition and grazing of microzooplankton in central South China Sea in autumn of 2016[J]. South China Fisheries Science, 2018, 14(3): 40-48. DOI: 10.3969/j.issn.2095-0780.2018.03.005

Species composition and grazing of microzooplankton in central South China Sea in autumn of 2016

More Information
  • Received Date: November 28, 2017
  • Revised Date: January 15, 2018
  • Available Online: January 07, 2019
  • To understand the species composition and grazing of microzooplankton in the central South China Sea (CSCS), we collected the surface water at ten sites in CSCS in October, 2016, and analyzed the abundance and species composition of their microzooplankton, as well as estimated the growth rate of phytoplankton and grazing pressure of microzooplankton on phytoplankton by dilution technique. A total of 21 microzooplankton species were identified, and the microzooplankton abundance varied from 120 ind·L–1 to 1 300 ind·L–1. The mean values of phytoplankton growth rate and microzooplankton grazing rate were – 0.92 –1.16 d–1 and 0.17 –1.58 d–1, respectively. Compared with the results of other sea areas in China, the grazing pressure of microzooplankton in CSCS was at a medium level. The mean values of grazing pressure on phytoplankton standing crop and grazing pressure on primary production were 15.6% –79.4% and –593.2% –187.7%, respectively. The grazing pressure on the primary productivity at most stations was over 100%, indicating that microzooplankton has obvious inhibitory effect on the growth of phytoplankton and plays an important role in primary production and secondary production of energy transfer process in CSCS.
  • [1]
    LYNN D H. The biology and ecology of tintinnid ciliates: models for marine plankton[M]//The biology and ecology of tintinnid ciliates. New Jersey: Wiley-Blackwell, 2013: 240-241.
    [2]
    AZAM F, FENCHEL T, FIELD J G, et al. The ecological role of water-column microbes in the sea[J]. Mar Ecol Prog Ser, 1983, 10(3): 257-263.
    [3]
    李洪波, 杨青, 周峰. 海洋微食物环研究新进展[J]. 海洋环境科学, 2012, 31(6): 927-932.
    [4]
    CONROY B J, STEINBERG D K, STUKEL M R, et al. Meso- and microzooplankton grazing in the Amazon River plume and western tropical North Atlantic[J]. Limnol Oceanogr, 2016, 61(3): 825-840.
    [5]
    王学锋, 李纯厚, 贾晓平. 微型浮游动物摄食生态学研究进展[J]. 南方水产, 2005, 1(5): 70-76.
    [6]
    苏纪兰. 南海环境与资源基础研究前瞻[M]. 北京: 海洋出版社, 2001: 140-150
    [7]
    李斌, 陈国宝, 郭禹, 等. 南海中部海域渔业资源时空分布和资源量的水声学评估[J]. 南方水产科学, 2016, 12(4): 28-37.
    [8]
    陈森, 张鹏, 晏磊, 等. 南海新建钢质罩网渔船渔获组成及渔场分析[J]. 南方水产科学, 2015, 11(5): 125-131.
    [9]
    于杰, 陈国宝, 张魁, 等. 南海中部海域夏季叶绿素a浓度垂向分布特征[J]. 南方水产科学, 2016, 12(4): 1-8.
    [10]
    邹建伟, 陈立峰, 林蒋进, 等. 南海外海灯光罩网主要渔场分布及变动研究——基于广西渔船的生产监测统计[J]. 南方水产科学, 2014, 10(4): 78-84.
    [11]
    LANDRY M R, HASSETT R P. Estimating the grazing impact of marine micro-zooplankton[J]. Mar Biol, 1982, 67(3): 283-288.
    [12]
    李灼, 孙军, 刘海娇, 等. 夏季南海北部微型浮游动物群落[J]. 海洋学报, 2016, 38(4): 31-42.
    [13]
    马璐, 曹文清, 张文静, 等. 北部湾北部海域夏季微型浮游动物对浮游植物的摄食压力[J]. 生态学报, 2014, 34(3): 546-554.
    [14]
    刘华雪, 谭烨辉, 黄良民, 等. 夏季南海北部纤毛虫群落组成及其水平分布[J]. 生态学报, 2010, 30(9): 2340-2346.
    [15]
    张翠霞, 张武昌, 肖天. 2007年10月南海北部浮游纤毛虫的丰度和生物量[J]. 生态学报, 2010, 30(4): 867-877.
    [16]
    于莹, 张武昌, 蔡昱明, 等. 冬季和夏季南海北部浮游纤毛虫的分布特点[J]. 海洋与湖沼, 2014, 45(4): 839-847.
    [17]
    SABATINI M E, AKSELMAN R, RETA R, et al. Spring plankton communities in the southern Patagonian Shelf: hydrography, mesozooplankton patterns and trophic relationships[J]. J Mar Sys, 2012, 94(2): 33-51.
    [18]
    周林滨, 谭烨辉, 黄良民. 微型浮游动物摄食实验——稀释法中浮游植物负生长的可能原因分析[J]. 热带海洋学报, 2013, 32(1): 48-54.
    [19]
    LANDRY M R, CALBET A. Microzooplankton production in the oceans[J]. ICES J Mar Sci, 2004, 61(4): 501-507.
    [20]
    CALBET A, LANDRY M R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems[J]. Limnol Oceanogr, 2004, 49(1): 51-57.
    [21]
    张文静, 林秋琳, 林元烧, 等. 东山湾微型浮游动物摄食压力分析[J]. 安全与环境工程, 2014, 21(5): 26-32.
    [22]
    田皓洁. 南海中北部典型海区微型浮游动物及其对浮游植物的摄食研究[D]. 厦门: 厦门大学, 2007: 47-53.
    [23]
    刘华雪, 黄良民, 谭烨辉, 等. 2007年夏季南海北部微型浮游动物摄食研究[J]. 海洋环境科学, 2011, 30(2): 189-192.
    [24]
    ZHOU L, TAN Y, HUANG L, et al. Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon[J]. Biogeosciences, 2015, 12(22): 6809-6822.
    [25]
    CHEN B Z, LIU H B, LANDRY M R, et al. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea[J]. Limnol Oceanogr, 2009, 54(4): 1084-1097.
    [26]
    ZHOU L, TAN Y, HUANG L, et al. Phytoplankton growth and microzooplankton grazing in the continental shelf area of northeastern South China Sea after Typhoon Fengshen[J]. Cont Shelf Res, 2011, 31(16): 1663-1671.
    [27]
    郑丽平, 相卫国, 黄邦钦. 冬季南海北部海域微型浮游动物及其对浮游植物摄食压力研究[J]. 台湾海峡, 2012, 31(1): 72-78.
    [28]
    曾祥波, 黄邦钦. 台湾海峡南部夏季微型浮游动物对浮游植物的摄食压力及其生产力[J]. 台湾海峡, 2006, 25(1): 1-9.
    [29]
    HUANG B, XIANG W, ZENG X, et al. Phytoplankton growth and microzooplankton grazing in a subtropical coastal upwelling system in the Taiwan Strait[J]. Cont Shelf Res, 2011, 31(6): S48-S56.
    [30]
    王学锋, 李纯厚, 贾晓平, 等. 大亚湾春季微型浮游动物摄食研究[J]. 南方水产, 2006, 2(5): 30-35.
    [31]
    杨青, 曹文清, 林元烧, 等. 厦门港表层水体磷周转的生物学过程研究Ⅰ.微型浮游动物对浮游植物的摄食[J]. 海洋学报(中文版), 2008, 30(1): 172-178.
    [32]
    苏素红, 陈炳章, 黄邦钦. 2011年春夏季黄海和东海微型浮游动物类群组成及其摄食的研究[J]. 应用海洋学学报, 2014, 33(1): 60-67.
    [33]
    杨阳. 天津市近岸微型浮游动物摄食研究[D]. 天津: 天津科技大学, 2016: 26-33.
  • Related Articles

    [1]WANG Yongjin, ZHANG Xun, ZHANG Yu, ZHOU Aizhong, LI Ziniu, WANG Shuaijie, LIU Longteng, WANG Lumin. Influence of main structural parameters on performance of bottom trawl with large-size mesh[J]. South China Fisheries Science, 2021, 17(4): 66-73. DOI: 10.12131/20210026
    [2]YANG Bingzhong, YANG Lin, TAN Yongguang, YAN Lei, ZHANG Peng, LI Jie. Size selectivity of combined square mesh and diamond mesh codends of shrimp beam trawl in South China Sea[J]. South China Fisheries Science, 2018, 14(1): 105-113. DOI: 10.3969/j.issn.2095-0780.2018.01.014
    [3]YAN Lei, LI Yanan, TAN Yongguang, YANG Lin, YANG Bingzhong, ZHANG Peng, CHEN Sen, LI Jie. Mesh size selectivity of Harpodon nehereus gillnet in northern South China Sea[J]. South China Fisheries Science, 2016, 12(2): 75-80. DOI: 10.3969/j.issn.2095-0780.2016.02.011
    [4]YANG Bingzhong, YANG Lin, TAN Yongguang, ZHANG Peng, YAN Lei, CHEN Sen. Preliminary analysis of relationship between mesh size of gillnet and body characteristics of target species in the South China Sea[J]. South China Fisheries Science, 2015, 11(6): 94-99. DOI: 10.3969/j.issn.2095-0780.2015.06.013
    [5]NIU Zhikai, LIU Baosuo, ZHANG Dongling, TAN Caigang, ZHANG Bo, CHEN Mingqiang, FAN Sigang, JIANG Song, HUANG Guiju, LI Youning, YU Dahui. Comparative analysis of growth traits and shell-closing strength among hybrid populations from three geographical groups of pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2015, 11(1): 26-32. DOI: 10.3969/j.issn.2095-0780.2015.01.004
    [6]YANG Bingzhong, YANG Lin, TAN Yongguang, ZHANG Peng, YAN Lei. Relationship between body characteristic of Scomberomorus and the mesh size[J]. South China Fisheries Science, 2013, 9(5): 120-125. DOI: 10.3969/j.issn.2095-0780.2013.05.018
    [7]ZHANG Xu-feng, ZHANG Peng, TAN Yong-guang, YANG Lin. Analysis on catch selectivity of 30.3 mm square mesh codend oftrawl in Northern South China Sea[J]. South China Fisheries Science, 2006, 2(2): 51-55.
    [8]GE Zhangzi, LIANG Zhenlin, TOKAI Tadashi. Mesh size selectivity of white spotted ell pot in coast of Japan[J]. South China Fisheries Science, 2006, 2(1): 58-61.
    [9]GE Chang-zi. The review on the analysis of mesh size selectivity of trawl cod-end[J]. South China Fisheries Science, 2005, 1(4): 30-35.
    [10]ZHANG Peng, YANG Lin, ZHANG Xu-feng, TANG Yong-guang. Study on selectivity of different mesh size gillnet for Nemipterus virgatus in South China Sea[J]. South China Fisheries Science, 2005, 1(2): 61-66.
  • Cited by

    Periodical cited type(10)

    1. 米锐,周遵春,孟楠. 海参内脏酶解物和体壁溶出物的护肤功效评价. 现代食品科技. 2023(01): 222-229 .
    2. 刘文亮,周永波,曾荣急,单勇军,黄世英,李健. 海参内脏精深加工难点与对策. 食品工业科技. 2023(20): 458-466 .
    3. 颜琳,姜双双,闫欣,姚艳艳,常丽荣,李长青. 皱纹盘鲍腹足抗氧化肽的制备及其工艺优化. 食品与发酵工业. 2019(17): 123-128 .
    4. 张金杨,胡晓,李来好,杨贤庆,吴燕燕,林婉玲,邓建朝,荣辉,黄卉. 罗非鱼酶解物矿物离子结合能力及其结合物抗氧化活性. 食品与发酵工业. 2018(05): 76-81 .
    5. 姜卉,金文刚,许景光,吴海涛,王笑涵,商文慧,韩佳润,唐越. 热变性对海参肠酶解物活性的影响. 食品工业科技. 2018(14): 29-33 .
    6. 何传波,邵杰,魏好程,熊何健,吴国宏,马英,吴建勇. 鲍内脏蛋白肽抗氧化和免疫调节活性. 食品科学. 2018(05): 206-212 .
    7. 吴燕燕,张婉,李来好,王锦旭,胡晓,杨少玲. 海萝藻中类菌胞素氨基酸的种类分析及抗氧化性能. 中国食品学报. 2018(05): 264-272 .
    8. 潘南,吴靖娜,苏永昌,陈贝,苏捷,郑昇阳,刘智禹. 福建养殖仿刺参抗氧化多肽的酶解工艺优化及其对过氧化氢诱导的血管内皮细胞EA.hy926损伤的保护作用. 食品工业科技. 2018(24): 183-191 .
    9. 杨伊然,胡晓,杨贤庆,李来好,陈胜军,吴燕燕,林婉玲,黄卉,马海霞. 蓝圆鲹蛋白酶解物的螯合矿物离子活性研究. 食品科学. 2017(03): 88-93 .
    10. 陶海英,闫鸣艳,尹利端. 刺参内脏蛋白酶解液抗氧化活性研究. 食品研究与开发. 2015(11): 58-61 .

    Other cited types(12)

Catalog

    Recommendations
    Establishment and application of qpcr and raa-lfd based onrecagene for detection ofpseudomonas anguilliseptica
    WANG Yilin et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effect of blanching treatment on oyster meat quality during refrigeration and frozen storage
    CUI Junwei et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Hctlr1 involved in antimicrobial immune response by myd88-nf-κb signaling pathway inhyriopsis cumingii
    LU Junyi et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network
    XU Bo et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    The effects of forced aeration and initial moisture level on red pigment and biomass production by monascus ruber in packed bed solid state fermentation.
    F. M. Said et al., INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND DEVELOPMENT, 2010
    Optimization and characterization of free and cross-linked enzymes aggregate from solid-state fermented materials
    CHEMICAL AND NATURAL RESOURCES ENGINEERING JOURNAL (FORMALLY KNOWN AS BIOLOGICAL AND NATURAL RESOURCES ENGINEERING JOURNAL), 2023
    Novel nacl reduction technologies for dry-cured meat products and their mechanisms: a comprehensive review
    Jia, Shiliang et al., FOOD CHEMISTRY, 2024
    Effects of different thermal processing methods on bioactive components, phenolic compounds, and antioxidant activities of qingke (highland hull-less barley)
    Hong, Qingyue et al., FOOD SCIENCE AND HUMAN WELLNESS, 2023
    Heat transfer augmentation, endothermic pyrolysis and surface coking of hydrocarbon fuel in manifold microchannels at a supercritical pressure
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025
    Large-scale manufacturing of human gallbladder epithelial cell products and derived hepatocytes via a chemically defined approach
    TRENDS IN BIOTECHNOLOGY
    Powered by
    Article views (3273) PDF downloads (395) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return