Citation: | LIU Yongxin, LIU Yi, LIU Yingjie, YANG Runqing. Allometric analysis of body weight and morphological traits for Japanese flounder(Paralichthys olivaceus)[J]. South China Fisheries Science, 2016, 12(1): 36-42. DOI: 10.3969/j.issn.2095-0780.2016.01.006 |
To analyze the genetic rule of allometry between body weight and morphological traits for Japanese flounder (Paralichthys olivaceus), we established 19 full-sib families by artificial insemination to observe their body weights and morphological traits at different days of age. We constructed the optimal joint allometry model by stepwise regression method which was then nested into the fixed and genetic effects of animal model for body weight. Furthermore, we analyzed the genetic rules of allometry for multiple morphological traits. The allometric index between body weight and total length presented positive allometry with maximum value of 1.415 5. The allometric index between residual morphological traits and body weight ranged from 0.061 5 to 0.718 0, showing negative allometry. The maximum positive genetic correlation of allometric index between total length and caudal peduncle depth reached 0.907 8, while the highest negative genetic correlation existed between total length and caudal peduncle length (-0.946 8). Comparing different models by the statistic criteria, Model Ⅰ is the optimal regression model for dynamic allometric analysis.
[1] |
雷霁霖. 海水鱼类养殖理论与技术[M]. 北京: 中国农业出版社, 2005: 482-483. https://xueshu.baidu.com/usercenter/paper/show?paperid=2b3b35b9feeb760b39ab1753e08e1a1d&site=xueshu_se
|
[2] |
刘永新, 周勤, 张红涛, 等. 红鳍东方鲀(Takifugu rubripes)生长性状的遗传参数估计[J]. 渔业科学进展, 2014, 35(6): 39-44. https://xueshu.baidu.com/usercenter/paper/show?paperid=f1f1d7b11fdf3dc6651317f8b489e4a1&site=xueshu_se&hitarticle=1
|
[3] |
SHIKANO T. Quantitative genetic parameters for growth-related and morphometric traits of hatchery-produced Japanese flounder Paralichthys olivaceus in the wild[J]. Aquac Res, 2007, 38(12): 1248-1253. doi: 10.1111/j.1365-2109.2007.01749.x
|
[4] |
SHIKANO T. Estimation of quantitative genetic parameters using marker-inferred relatedness in Japanese flounder: a case study of upward bias[J]. J Hered, 2008, 99(2): 94-104. https://xueshu.baidu.com/usercenter/paper/show?paperid=d2606809e4e3e877e593ad588bb1eaea&site=xueshu_se&hitarticle=1
|
[5] |
SHIMADA Y, SHIKANO T, MURAKAMI N, et al. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus[J]. Fish Sci, 2007, 73(2): 244-249. https://xueshu.baidu.com/usercenter/paper/show?paperid=e8a8860b0acdaaa84d42103abd8e1d32&site=xueshu_se&hitarticle=1
|
[6] |
LIU Y X, LI J, LIU H J, et al. Phenotypic and genetic parameter estimation of morphological traits related to axial body growth in Japanese flounder[J]. Fish Sci, 2014, 80(2): 317-321. doi: 10.1007/s12562-014-0704-3
|
[7] |
LIU Y X, WANG G X, WANG Y F, et al. Estimation of genetic parameters for growth traits of Japanese flounder Paralichthys olivaceus using an animal model[J]. Fish Sci, 2011, 77(1): 87-93. doi: 10.1007/s12562-010-0311-x
|
[8] |
EGSET C K, BOLSTAD G H, ROSENQVIST G, et al. Geographical variation in allometry in the guppy (Poecilia reticulata)[J]. J Evol Biol, 2011, 24(12): 2631-2638. doi: 10.1111/j.1420-9101.2011.02387.x
|
[9] |
GAO H J, LIU Y X, ZHANG T T, et al. Statistical models for jointly analyzing multiple allometries[J]. J Theor Biol, 2013, 318(2): 205-209. https://xueshu.baidu.com/usercenter/paper/show?paperid=018d6fe833279f5968e5b29921a64699&site=xueshu_se&hitarticle=1
|
[10] |
NIKLAS K J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories[J]. New Phytol, 2006, 171(1): 27-40. doi: 10.1111/j.1469-8137.2006.01760.x
|
[11] |
WEST G B, BROWN J H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization[J]. J Exp Biol, 2005, 208(9): 1575-1592. doi: 10.1242/jeb.01589
|
[12] |
PÉLABON C, BOLSTAD G H, EGSET C K, et al. On the relationship between ontogenetic and static allometry[J]. Am Nat, 2013, 181(2): 195-212. doi: 10.1086/668820
|
[13] |
PÉLABON C, FIRMAT C, BOLSTAD G H, et al. Evolution of morphological allometry[J]. Ann N Y Acad Sci, 2014, 1320(7): 58-75. https://xueshu.baidu.com/usercenter/paper/show?paperid=b0406a38a8b6c51dfb3a1ea512829dcb&site=xueshu_se&hitarticle=1
|
[14] |
VOJE K L, HANSEN T F, EGSET C K, et al. Allometric constraints and the evolution of allometry[J]. Evolution, 2014, 68(3): 866-885. doi: 10.1111/evo.12312
|
[15] |
VOJE K L, HANSEN T F. Evolution of static allometries: adaptive change in allometric slopes of eye span in stalk-eyed flies[J]. Evolution, 2013, 67(2): 453-467. https://pubmed.ncbi.nlm.nih.gov/23356617/
|
[16] |
EGSET C K, HANSEN T F, Le ROUZIC A, et al. Artificial selection on allometry: change in elevation but not slope[J]. J Evol Biol, 2012, 25(5): 938-948. doi: 10.1111/j.1420-9101.2012.02487.x
|
[17] |
FRANKINO W A, ZWAAN B J, STERN D L, et al. Natural selection and developmental constraints in the evolution of allometries[J]. Science, 2005, 307(5710): 718-720. doi: 10.1126/science.1105409
|
[18] |
MCGUIGAN K, NISHIMURA N, CURREY M, et al. Quantitative genetic variation in static allometry in the threespine stickleback[J]. Integr Comp Biol, 2010, 50(6): 1067-1080. doi: 10.1093/icb/icq026
|
[19] |
LI H, HUANG Z, GAI J, et al. A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry[J]. PLoS One, 2007, 2(11): e1245. doi: 10.1371/journal.pone.0001245
|
[20] |
WU R L, HOU W. A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny[J]. Genetics, 2006, 172(1): 627-637. doi: 10.1534/genetics.105.045310
|
[21] |
MOUTOPOULOS D K, STERGIOU K I. Length-weight and length-length relationships of fish species from the Aegean Sea (Greece)[J]. J Appl Ichthyol, 2002, 18(3): 200-203. doi: 10.1046/j.1439-0426.2002.00281.x
|
[22] |
MENDES B, FONSECA P, CAMPOS A. Weight-length relationships for 46 fish species of the Portuguese West coast[J]. J Appl Ichthyol, 2004, 20(5): 355-361. doi: 10.1111/j.1439-0426.2004.00559.x
|
[23] |
徐海龙, 谷德贤, 乔秀亭, 等. 渤海湾主要渔业资源长度与体质量关系分析[J]. 南方水产科学, 2014, 10(1): 57-63. doi: 10.3969/j.issn.2095-0780.2014.01.009
|
[24] |
詹金绵, 王炳谦, 谷伟, 等. 虹鳟体质量和主要体尺性状异速生长的遗传分析[J]. 中国水产科学, 2015, 22(1): 60-67. https://xueshu.baidu.com/usercenter/paper/show?paperid=236e5a3663fa69ab59a8591e817c96cc&site=xueshu_se&hitarticle=1
|
[25] |
马境, 章龙珍, 庄平, 等. 施氏鲟仔鱼发育及异速生长模型[J]. 应用生态学报, 2007, 18(12): 2875-2882. https://xueshu.baidu.com/usercenter/paper/show?paperid=c81fd4ad5df887284c2907c877aa7f1a&site=xueshu_se&hitarticle=1
|
[26] |
HUYSENTRUYT F, MOERKERKE B, DEVAERE S A. Early development and allometric growth in the armoured catfish Corydoras aeneus (Gill, 1858)[J]. Hydrobiologia, 2009, 627(1): 45-54. doi: 10.1007/s10750-009-9714-z
|
[27] |
庄平, 宋超, 章龙珍, 等. 全人工繁殖西伯利亚鲟仔稚鱼发育的异速生长[J]. 生态学杂志, 2009, 28(4): 681-687. https://xueshu.baidu.com/usercenter/paper/show?paperid=36c48af570471c887883aac50173ba9a&site=xueshu_se
|
[28] |
单秀娟, 窦硕增.𩾃鱼(Miichthys miiuy)仔、稚鱼发育生长方式及其生态学意义[J]. 海洋与湖沼, 2009, 40(6): 714-719. doi: 10.3321/j.issn:0029-814X.2009.06.007
|
[29] |
何勇凤, 吴兴兵, 朱永久, 等. 鲈鲤仔鱼的异速生长模式[J]. 动物学杂志, 2013, 48(1): 8-15. https://xueshu.baidu.com/usercenter/paper/show?paperid=971910da8340109638c119b70e3ee2b6&site=xueshu_se&hitarticle=1
|
[30] |
席丹, 张秀梅, 吕红健, 等. 许氏平鲉早期异速生长模式的研究[J]. 中国海洋大学学报(自然科学版), 2014, 44(12): 28-34. https://xueshu.baidu.com/usercenter/paper/show?paperid=cffe3b7140addcb5f8b849020c6d29c8&site=xueshu_se&hitarticle=1
|
[31] |
雷舒涵, 张秀梅, 张沛东, 等. 金乌贼的早期生长发育特征[J]. 中国水产科学, 2014, 21(1): 37-43. https://xueshu.baidu.com/usercenter/paper/show?paperid=0ae04b8a28e93bbced72b6d76283ae68&site=xueshu_se&hitarticle=1
|
[32] |
陈方灿, 李新辉, 李捷, 等. 珠江肇庆江段赤眼鳟开口后仔、稚鱼的异速生长分析[J]. 广东农业科学, 2015(3): 103-109. doi: 10.3969/j.issn.1004-874X.2015.03.023
|
1. |
衣帆,王娇,刘航,陈静,陈琳琳,李晓静,李学鹏,李宝泉. 烟台长岛秋季海洋牧场内外大型底栖动物群落特征分析. 海洋学报. 2024(05): 57-67 .
![]() | |
2. |
袁华荣,章守宇,陈丕茂. 海洋牧场建设效益评价研究进展与展望. 南方水产科学. 2024(05): 1-13 .
![]() | |
3. |
张启宇,张文博,郑奕,陈英义,何锦辉. 基于CiteSpace分析的国内海洋牧场研究进展. 农业工程. 2024(11): 65-73 .
![]() | |
4. |
马文刚,夏景全,魏一凡,尹洪洋,覃乐政,刘相波,胡雪晴,许强,李秀保,王爱民. 三亚蜈支洲岛海洋牧场近岛区底表大型底栖动物群落结构及评价. 热带海洋学报. 2022(03): 135-146 .
![]() | |
5. |
张亚洲,蒋日进,梁君. 嵊泗马鞍列岛海域国家级海洋牧场渔业资源增殖养护效果评析. 浙江海洋大学学报(自然科学版). 2022(05): 466-472 .
![]() | |
6. |
许双杰,高源. 中国海洋牧场发展潜力的时空差异分析. 海洋经济. 2022(06): 64-73 .
![]() | |
7. |
刘伟峰,刘大海,管松,姜伟. 海洋牧场生态效益的内涵与提升路径. 中国环境管理. 2021(02): 33-38+54 .
![]() | |
8. |
王书献,张胜茂,戴阳,王永进,隋江华,朱文斌. 利用声呐数据提取磷虾捕捞深度方法研究. 南方水产科学. 2021(04): 91-97 .
![]() | |
9. |
裴琨,吴一桂,杨润琼. 中国最早的人工鱼礁试验地——防城港市白龙珍珠湾海洋牧场人工鱼礁建设概述. 河北渔业. 2020(06): 22-27+63 .
![]() | |
10. |
吴程宏,张羽翔,赵海龙,陈敏,刘维,林国尧. 海南文昌冯家湾人工鱼礁区渔业资源养护效果初步评估. 海洋湖沼通报. 2020(06): 158-167 .
![]() |