50日龄中华鲟幼鱼肠道微生物群落结构特征及其影响因素

田甜, 张建明, 朱欣, 张德志, 胡亚成

田甜, 张建明, 朱欣, 张德志, 胡亚成. 50日龄中华鲟幼鱼肠道微生物群落结构特征及其影响因素[J]. 南方水产科学, 2025, 21(2): 102-109. DOI: 10.12131/20240255
引用本文: 田甜, 张建明, 朱欣, 张德志, 胡亚成. 50日龄中华鲟幼鱼肠道微生物群落结构特征及其影响因素[J]. 南方水产科学, 2025, 21(2): 102-109. DOI: 10.12131/20240255
TIAN Tian, ZHANG Jianming, ZHU Xin, ZHANG Dezhi, HU Yacheng. Analysis of intestinal microbial community structure of 50 DAH Acipenser sinensis juvenile and its impact factors[J]. South China Fisheries Science, 2025, 21(2): 102-109. DOI: 10.12131/20240255
Citation: TIAN Tian, ZHANG Jianming, ZHU Xin, ZHANG Dezhi, HU Yacheng. Analysis of intestinal microbial community structure of 50 DAH Acipenser sinensis juvenile and its impact factors[J]. South China Fisheries Science, 2025, 21(2): 102-109. DOI: 10.12131/20240255

50日龄中华鲟幼鱼肠道微生物群落结构特征及其影响因素

基金项目: 湖北省自然科学基金面上项目 (2023AFB989);中国长江三峡集团有限公司自主科研项目 (WWKY-2020-0079)
详细信息
    作者简介:

    田 甜 (1984—),女,高级工程师,硕士,研究方向为长江珍稀鱼类病害。E-mail: cocotian1234@126.com

  • 中图分类号: S 943

Analysis of intestinal microbial community structure of 50 DAH Acipenser sinensis juvenile and its impact factors

Funds: Chinese Sturgeon Research Institute of China Three Gorges Corporation/Hubei Key Laboratory of Three Gorges Project for Fish Resource Conservation, Yichang 443100, China
  • 摘要:

    肠道菌群被称作宿主的“第二基因组”。探究外界因素对中华鲟 (Acipenser sinensis) 幼鱼肠道微生物群落结构的影响,对中华鲟幼鱼的健康培育具有重要参考价值。以50日龄中华鲟幼鱼为研究对象,基于高通量测序技术分析了肠道和肠道内容物的菌群特征,并研究了菌群结构与饵料、养殖水源水之间的相关性。结果显示,在属分类水平上,肠道和肠道内容物之间的微生物组成存在差异,肠道优势菌属为不动杆菌属 (Acinetobacter)、乳球菌属 (Lactococcus)、柠檬酸杆菌属 (Citrobacter)、假单胞菌属 (Pseudomonas) 和Clostridium_sensu_stricto_1,而肠道内容物优势菌属为乳球菌属、Clostridium_sensu_stricto_1和土孢杆菌属 (Terrisporobacter)。通过SourceTracker物种来源分析追踪微生物的来源,结果显示,肠道微生物中有82.68%来源于饵料,1.89%来源于养殖水源水;肠道内容物微生物中有94.60%来源于饵料,0.93%来源于养殖水源水。研究表明,中华鲟幼鱼肠道和肠道内容物的微生物组成在属分类水平上存在差异,前者优势菌属多为潜在致病菌,后者多为有益菌;与养殖水源水相比,饵料对肠道和肠道内容物的微生物群落组成具有更高的贡献。

    Abstract:

    Intestinal microbiome is regarded as the "second genome" of host. Comprehending the influences of external factors on the structure of the intestinal microbial community in juvenile Chinese sturgeon (Acipenser sinensis) can provide a reference for its healthy breeding. Taking 50 DAH A. sinensis juvenile as objects, we applied the high-throughput sequencing technology to analyze the characteristics of intestine and intestinal content, and explore their correlation with feed and culture source water. The results show that on genus level, there were differences in the microbial composition between intestine and intestinal content. The intestine was mainly composed of Acinetobacter, Lactococcus, Citrobacter, Pseudomonas and Clostridium_sensu_stricto_1, while the intestinal content was mainly composed of Lactococcus, Clostridium_sensu_stricto_1 and Terrisporobacter. Source Tracker analysis verified that 82.68% of the intestine community came from the feed, and 1.89% came from the culture source water. While 94.60% of the intestinal content community came from the feed, and 0.93% came from the culture source water. The study indicates that there are differences in the microbial composition of the intestine and intestinal content of the juvenile on genus level. The dominant bacterial genera in the former are mostly potential pathogenic bacteria, while those in the latter are mostly beneficial bacteria. Compared with the culture source water, the feed has a higher contribution to the composition of the intestine and intestinal content microbial community.

  • 虾青素是一种脂溶性酮式类胡萝卜素[1],其分子结构中含有11个共轭双键、2个β-紫罗兰酮环和羟基。虾青素因具有抗氧化[2-3]、抗炎[4-5]和免疫调节[6-7]等作用而受到广泛关注,它在保护人类和动物免受包括心血管疾病、糖尿病、癌症和一些免疫系统疾病方面具有巨大的应用潜力[8],已被广泛应用于食品、膳食补充剂、药品和化妆品等各个领域。

    虾青素在自然界的主要存在形式是与不同种类脂肪酸结合的虾青素酯[9],红球藻 (Haematococcus) 中虾青素组成约为70%的单酯形式、25%的双酯形式和5%的游离形式[10]。天然的虾青素酯存在成分复杂、功能差异大等问题[11],且大多数动物体内不能合成虾青素,只能从食物等其他途径获得[12]。此外,有研究表明游离形式虾青素的生物利用度更高、更容易被机体吸收利用[13],因此将虾青素酯水解制备游离虾青素,是提升虾青素产品品质和功能活性的一个重要研究方向。虾青素酯的水解反应一般通过强碱皂化或酶解的方式进行[14]。皂化法是水解虾青素酯的传统方法[15-16],过程中需要使用强碱溶液,反应条件剧烈,反应过程的废液会造成环境污染隐患,并且虾青素对热敏感,高温反应条件可能会导致虾青素降解,并容易产生虾红素等副产物[17-18]。酶解法具有反应条件温和、水解效率高、副产物少、产物生物安全性好等优势,是皂化法的理想替代方法[19]。孔凡华等[20]通过比较不同脱脂方法所测得的虾青素含量,总结出酶解法对虾青素的含量影响较小,先酶解再进行液相色谱分析可以准确定量样品中虾青素的含量。

    脂肪酶 (EC 3.1.1.3) 是一种能够水解三酰基甘油酯的酶,也可催化酯化、酯交换等反应。关于使用脂肪酶水解虾青素酯已有相关研究。Zhao等[21]使用在毕赤酵母 (Pichia sp.)中表达的碱性脂肪酶用于水解虾青素酯,以吐温80作为乳化剂,在pH 7.0、温度28 ℃、4.6 U·μg−1脂肪酶剂量和0.1 mol·L−1磷酸钠缓冲液的条件下,7 h内可回收63.2%的游离虾青素。Gao等[22]在枯草芽孢杆菌(Bacillus subtilis)中表达了一种新型的链霉菌脂肪酶OUC-Sb-lip12用于水解虾青素酯,100 μg虾青素酯中虾青素得率为61.43 μg。现有研究表明利用脂类水解酶酶解制备虾青素的得率较高,但存在反应时间较长、菌株来源安全性较低的问题。因此,目前需要找到一种水解效率高、反应过程温和、反应副产物少、来源安全的酶,快速制备游离虾青素,为后续虾青素的综合利用提供参考。

    本文从浅紫色链霉菌 (Streptomyces violascens) ATCC 27968中发掘Sv-lip5脂肪酶,并使用食品级表达系统枯草芽孢杆菌WB800对其进行克隆表达。探究了其酶学性质及其在虾青素酯水解中的应用,进一步丰富了虾青素酯水解酶库,实现了在短时间内大量制备游离虾青素,为提升虾青素的功能活性和生物利用度提供有益参考。

    实验所用pP43NMK质粒及枯草芽孢杆菌WB800感受态细胞均为本实验室保藏;用于基因克隆的大肠杆菌 (Escherichia coli) Trelief TM5α购自北京天根生化科技。

    虾青素酯 (虾青素酯质量分数为10%) 购自云南爱尔发生物技术股份有限公司,纯度高于96%;虾青素购于上海阿拉丁生化科技股份有限公司;对硝基苯酚棕榈酸酯购自美国SIGMA公司;胶回收试剂盒购自美国OMEGA公司;质粒提取试剂盒购自北京天根生化科技有限公司;色谱级甲醇和甲基叔丁基醚用于液相检测;其余试剂如二氯甲烷、异丙醇等均为分析纯。

    BCM-1000型生物净化工作台 (苏州净化公司);DYY-6C型核酸电泳仪 (北京市六一仪器厂);5804R高速冷冻离心机 (Eppendorf公司);Thermo Scientific Multiskan FC酶标仪 (Thermo Scientific公司);LC-20A高效液相色谱仪 (日本岛津公司)。

    基于本实验室的浅紫色链霉菌 ATCC 27968的测序结果,找到具有脂肪酶活性的片段,对其进行克隆表达,将蛋白命名为Sv-lip5。根据已有的分析方法对脂肪酶DNA序列进行分类,使用Clustal W进行多序列比对,利用ESPript 3.0网站对序列的比对结果进行在线展示和输出,使用ExPaSy (https://web.expasy.org/protparam/) 计算理论分子量和等电点。

    根据脂肪酶基因序列及载体序列,使用SnapGene软件进行引物设计 (表1)。

    表  1  引物设计
    Table  1  Sequences of primers
    引物名称
    Primer name
    引物序列 (5'—3')
    Primer sequence (5'—3')
    Sv-lip5-R cagtggtggtggtggtggtgccaggccagttgggc
    Sv-lip5-F taacacatgcctcagctgcagtgcacggccgggca
    Bone-R tgcagctgaggcatgtgttac
    Bone-F caccaccaccaccaccactgatgaaagcttggcgtaatc
    Tong-R cacacaggaaacagctatgacc
    Tong-F gagttgctagtaacatctgaccg
    下载: 导出CSV 
    | 显示表格

    以Sv-lip5片段为模板,利用表1设计的引物进行扩增,扩增完成后以无缝连接的形式构建重组质粒,测序正确后提取质粒pP43NMK-Sv-lip5,导入感受态细胞WB800中表达蛋白。

    利用质粒上His-tag标签蛋白与镍柱结合的性质对Sv-lip5纯化,依次使用体质量分数为20%的乙醇、水冲洗柱子,后用6倍柱体积的Tris-HCl (0.1 mol·L−1) 缓冲液平衡镍柱,将冻干后复溶的酶液过膜后分批加入平衡后的镍柱中,确保酶与镍柱充分结合。使用不同浓度的咪唑Tris-HCl缓冲液洗脱,收集不同浓度的洗脱液,浓缩后通过SDS-PAGE蛋白电泳验证纯化结果。

    使用对硝基苯酚棕榈酸酯进行酶活性测定。吸取甘氨酸氢氧化钠 (Gly-NaOH) 缓冲液 (0.1 mol·L−1, pH 9.0) 500 μL于2 mL EP管中,加入50 μL酶液和20 μL pNPP底物 (0.02 mol·L−1),混合后于40 ℃水浴锅中反应5 min,加入330 μL 1%的SDS缓冲液终止反应。取200 μL反应液于405 nm测定吸光度。

    脂肪酶酶活性 (U) 单位的定义:在一定的反应条件下,每分钟水解底物释放1 μmol对硝基苯酚(p-nitrophenol, pNP) 所需的酶量定义为一个酶活单位,即1 U。

    取等量酶液在不同温度 (25、30、35、40、45、50、55、60 ℃) 下水解对硝基苯酚棕榈酸酯,测定酶活性。将最适温度下的活性定义为100%,计算其他温度下的相对酶活。取等量酶液分别在不同温度 (35、40、45、50 ℃) 下孵育42 h,在一定时间间隔取样,最适条件下测定酶活,同一温度下以0 h酶活定义为100%,分别计算不同温度下酶的活性。

    选取100 mmol·L−1的pH 4.0~6.0的柠檬酸-柠檬酸钠缓冲液、pH 6.0~8.0的磷酸盐缓冲液、pH 8.0~9.0的Tris-HCl缓冲液、pH 9.0~10.0的Gly-NaOH缓冲液作为酶反应的缓冲液进行反应,测定不同pH下的酶活性。将最适pH下的活性定义为100%,计算其他pH条件下的相对酶活。取等量酶液于上述缓冲液中孵育96 h,在不同时间间隔取样,在最适条件下测定酶活,同一pH下酶活最高的时间点的活性定义为100%,分别计算在不同pH缓冲液中脂肪酶的活性。

    在酶液中分别加入钴离子 (Co2+)、钾离子 (K+)、锌离子 (Zn2+)、镁离子 (Mg2+)、镍离子 (Ni2+)、锰离子 (Mn2+)、钡离子 (Ba2+)、钠离子 (Na+)、钙离子 (Ca2+)、铜离子 (Cu2+)、铁离子 (Fe3+) 及化学试剂乙二胺四乙酸二钠 (Na2-EDTA),使其终浓度为1和10 mmol·L−1,将其置于37 ℃下保存1 h,进行酶活测定,探究金属离子及化学试剂对脂肪酶Sv-lip5的影响。在酶液中添加表面活性剂 (吐温60、吐温80、司盘20、司盘80、曲拉通X-100),探究表面活性剂对脂肪酶活性的影响。对照组中不添加金属离子或化学试剂,定义其活性为100%,反应体系和反应条件与实验组相同,分别计算添加金属离子及表面活性剂的实验组中脂肪酶活性。

    利用Sv-lip5进行虾青素酯的水解,水解反应体系为2 mg的雨生红球藻 (Haematococcus pluvialis) 油,溶于500 μL的无水乙醇中,超声加速溶解。25 mL的棕色具塞三角瓶作为反应容器,加入500 μL的底物,5 mL的Gly-NaOH缓冲液,加入不同量的酶粉后,充入氮气后密封,将其置于40 ℃水浴摇床中进行反应。

    实验设定pH为4.0~10.0,加酶量设置为80~900 mg,反应时间设置为0~25 h,分析不同pH、乙醇与缓冲液比例、加酶量和反应时间对水解率的影响。

    反应结束后取500 μL反应液,使用体积比为1∶2的异丙醇和二氯甲烷进行萃取,离心去上清,收集有机相并氮吹至近干,后用1∶1的色谱纯甲醇和甲基叔丁基醚1 mL复溶,过0.22 μm有机滤膜收集样品至棕色液相上样瓶中,避光保存待测。通过高效液相色谱 (HPLC) 检测虾青素的生成量。

    HPLC检测所用色谱柱为YMC-Carotenoid-C30 (4.6 mm×250 mm, 5 µm),紫外检测波长为475 nm,流动相为甲基叔丁基醚 (A) 和甲醇 (B),采用线性梯度洗脱的方式[23-24],0~15 min,B为90%;15~25 min,B从90%降至40%;25~35 min,B由40%重新升至90%。流速设置为1 mL·min−1,柱温箱35 ℃,进样量20 μL。

    采用Origin Pro软件进行数据统计和图片处理,数据均为3次平行。

    在杆菌状链霉菌ATCC 27968[25]测序结果中找到脂肪酶Sv-lip5的基因序列,其序列长度为1 014 bp,该蛋白编码了338个氨基酸,预测分子量为34.8 kD、等电点为5.36,对其进行脂肪酶多序列比对 (图1),结果表明Sv-lip5属于脂肪酶第四家族,具有第四家族的特征。

    图  1  Sv-lip5进化树分析
    Fig. 1  Phylogenetic analysis of Sv-lip5

    阳性克隆验证结果见图2-a。验证正确后的菌株在LB培养基中发酵12 h后,收集发酵液进行离心,上清液即为粗酶液。使用镍柱对粗酶进行纯化,用不同浓度的咪唑Tris-HCl缓冲液 (pH 8.0) 进行洗脱,收集各浓度洗脱液,浓缩后利用SDS-PAGE蛋白电泳进行验证,验证结果见图2-b,在0.1 mol·L−1的咪唑浓度下洗脱出了目标蛋白条带,蛋白大小与预测分子量相近,表明蛋白成功纯化。

    图  2  Sv-lip5的核酸电泳结果 (a) 和SDS-PAGE蛋白纯化结果 (b)
    Fig. 2  Nucleic acid electrophoresis results (a) and SDS-PAGE protein purification results (b) of Sv-lip5

    在25~65 ℃测定了Sv-lip5的最适温度和温度稳定性 (图3-a),可以看出Sv-lip5的最适温度为45 ℃,EST4也显示出相同的最适温度,并且可在较宽的温度范围内高效使用,适用于较高温度下的生物技术应用[26]。在25~45 ℃内,酶活逐渐增强至最大值,相对酶活保持在80%以上,之后随着温度的升高酶活逐渐下降,在65 ℃时相对酶活呈现较低状态 (22.3%)。酶的温度稳定性见图3-b,在缓冲液中孵育9 h后,40 ℃时的酶活迅速下降。经孵育42 h后,所有实验组残余酶活均在36.8%以上。

    图  3  Sv-lip5的酶学性质分析
    Fig. 3  Analysis of enzymatic properties of Sv-lip5

    本实验在pH 4.0~10.6内考察了Sv-lip5的最适pH及pH稳定性 (图3-c),表明Sv-lip5在pH为10.0的条件下表现出最佳活性,而在柠檬酸-柠檬酸钠缓冲液中活性普遍较低,最高活性仅23.7%,因此Sv-lip5对底物对硝基苯酚棕榈酸酯的水解活性表现出碱性偏好性。pH会影响酶活性中心基团的解离状态,当酶处于最适pH条件下,其活性基团处于适合与底物结合的解离状态;当其处于高于或低于最适pH的环境时,其活性基团解离状态改变,酶活性相应降低。pH也会影响酶的稳定性,过高或过低的pH会改变酶活性中心的构象,使酶活性降低。Sv-lip5在pH 9.0~10.0内均有较高的酶活,体现出碱性偏好性;但在pH稳定性的测定中,长时间处于pH 10.0的强碱环境中,酶活性有较明显下降,可能pH 10.0的环境对酶活性中心的构象有一定改变 (图3-c3-d)。Est16也被发现是碱性酯酶,其最适pH为8.0~9.0,可在7.0~11.0的宽pH范围内保持活性稳定[27]。当pH高于10.0时,Sv-lip5的相对酶活急速下降,当pH为10.6时残余酶活为50.4%。同时,在pH同为8.0的不同缓冲液条件下,Sv-lip5的酶活也表现出差异性,这种差异性是酶活性测定中的普遍现象[28]。叶凤凌等[29]阐述了pH环境对于植物多酚抑制氧合酶的影响,其中相同pH条件下的硼酸盐缓冲液、磷酸盐缓冲液以及Tris-HCl缓冲液中酶活性存在较大差别,可能是因为各缓冲液中不同的阴离子种类对酶活性的影响程度不同。

    图3-e的金属离子实验表明,1 mmol·L−1的Ca2+和10 mmol·L−1的Co2+和Ba2+增强了酶活性,在解脂耶氏酵母 (Yarrowia lipolytica) 中克隆表达的脂肪酶YLIP15也表明Ca2+具有增强酶活性的作用,而Mg2+则对YLIP4、YLIP5、YLIP7脂肪酶活性表现出抑制作用[30],与本实验结果一致。10 mmol·L−1浓度下除K+和Ni2+显著降低了酶活性外,其余金属离子都显示出轻微抑制。添加表面活性剂会显著影响Sv-lip5的活性,司盘20、司盘80、吐温60、吐温 80以及曲拉通X-100均对其活性有一定程度的抑制作用 (图3-f),司盘20和吐温60使其活性分别降低了25.7%和55.3%,可能是因为表面活性剂抑制了分子间和分子内的蛋白质相互作用[31]

    本实验结果表明Sv-lip5对虾青素酯具有显著的水解作用,反应前后物质对比见图4-a。反应前22.5~30 min内全部为虾青素酯,经过Sv-lip5作用后,可将其大部分转化为第5.5分钟出峰的游离虾青素。虾青素酯水解反应pH优化反应结果见图4-b。由于Sv-lip5是碱性脂肪酶,在碱性条件下显示出最佳活性且稳定性较好。在pH为9.0的缓冲液中水解反应效果最佳,反应12 h后可产生17.18 μg虾青素,但在其最适pH 10.0的条件下该酶的水解效果反而显著降低,仅产生5.03 μg虾青素,可能是由于该酶在pH 10.0下的稳定性较差,12 h的反应时间导致酶活性降低,虾青素产量也随之减少。碱性脂肪酶Lipase-YH也存在相同现象,其在pH 6.0~7.0内虾青素产量逐渐增加,但在偏碱性 (pH 8.0~9.0) 条件下却逐渐减少[32],可能是碱性环境下虾青素存在一定程度的降解。

    图  4  Sv-lip5在虾青素酯水解反应中的条件优化
    Fig. 4  Optimization of reaction conditions of hydrolysis of astaxanthin ester by Sv-lip5

    乙醇和缓冲液比例对于虾青素酯水解具有一定的影响 (图4-c),当乙醇和缓冲液比为1∶12时,水解效果最佳,可产生27.63 μg虾青素,其余比例下的水解效果均比较微弱,虾青素产量均小于10.98 μg。

    通过调整酶量进行虾青素酯的水解研究 (图4-d),当添加80、160、240 mg脂肪酶时,虾青素的含量波动较小,水解效率较差,最高虾青素产量仅15.68 μg。当加酶量为320 mg时,虾青素产量有微弱的提升,第12小时水解率最高,可获得34.31 μg虾青素。在反应体系中添加400和500 mg酶粉时,水解效果有明显的转变。向反应体系中添加500 mg酶粉,第1小时的虾青素产量就可达87.95 μg,水解前后对比结果 (图4-a) 显示,反应完全时可以得到138.27 μg的虾青素,水解率为95.13%。Gao等[22]克隆表达的OUC-Sb-lip12也可用于虾青素酯的水解,在第12小时水解率达96.29%,通过优化时间与加酶量,本研究中Sv-lip5在12 h内水解率可达98.27%,200 μg虾青素酯中游离虾青素产量为147.48 μg,高于Gao等[22]报道的OUC-Sb-lip12水解游离虾青素产量,可能是由于反应过程中虾红素等副产物产生较少。经测定,Sv-lip5的比酶活为12.46 U·g−1,当酶添加量增加至一定程度后,其可高效水解虾青素酯。后续可以通过优化培养基成分与酶表达体系效率,进一步降低酶制备成本,保障虾青素酯的低成本高效水解;同时,可通过固定化[33-34]等方式提高Sv-lip5的回收利用率,进一步降低游离虾青素的制备成本。此外,Huang等[32]通过优化发酵pH、培养基配方以及甲醇浓度提高酶活性,使其适合大规模生产虾青素,旨在开发新型高效的酶工艺以减少成本消耗。本实验也可通过进一步水解体系优化等手段逐步完善虾青素酯水解反应,弥补光、热以及氮气充入不均一性对虾青素的部分降解。

    当酶量添加量较多时,酶粉与底物充分接触,1 h内就可达到较高的水解率,随着时间的延长,虾青素酯仍可继续降解,但后续降解速率逐渐变缓。当酶量添加较少时,虾青素的水解受到极大限制,在第12或第15小时可达到最大水解率,随着时间的延长,生成的虾青素也会受到环境因素的影响部分分解,19 h后部分曲线有下降趋势 (图4-d)。因此加酶量和时间对虾青素酯的水解相互影响。只有当加酶量到达一定限度时,水解反应才能以较高速率进行,且加酶量的增长可加速水解进程。

    本研究克隆表达了来自浅紫色链霉菌的脂肪酶Sv-lip5,该酶的蛋白分子量约34.8 kD,比活力为12.46 U·g−1,在45 ℃、pH为10.0的条件下显示出最佳酶活力,可用于虾青素酯的水解,水解产物为游离虾青素。该酶可耐碱性环境,从而避免了反应过程中杂菌的生长,通过优化反应条件得出,当乙醇与缓冲液体积比为1∶12、反应pH为9.0、加酶量为900 mg、在40 ℃下反应12 h,200 μg虾青素酯最终可收获147.48 μg游离虾青素。

  • 图  1   肠道、肠道内容物、饵料及其养殖水源水OTUs数量分布UpSet韦恩图

    注:C、CN、F、W分别表示肠道、肠道内容物、饵料和养殖水源水。

    Figure  1.   UpSet Venn diagram analysis of intestine, intestinal content, feed and culture source water

    Note: C, CN, F, W represent the samples of intestine, intestinal content, feed, culture source water, respectively.

    图  2   肠道、肠道内容物、饵料及其养殖水源水微生物优势菌门和优势属组成

    注:C、CN、F和 W 分别表示肠道、肠道内容物、饵料和养殖水源。

    Figure  2.   Composition of dominant bacterial phyla and genus of intestine, intestinal content, feed and culture source water

    Note: C, CN, F and W represent the samples of intestine, intestinal content, feed and culture source water, respectively.

    图  3   肠道、肠道内容物、饵料及其养殖水源水微生物群落Alpha多样性分析

    注:C、CN、F和W 分别表示肠道、肠道内容物、饵料和养殖水源;*. p<0.05; **. p<0.01; ***. p<0.001。

    Figure  3.   Alpha diversity analysis of microorganism of intestine, intestinal content, feed and culture source water

    Note: C, CN, F and W represent the samples of intestine, intestinal content, feed, and culture source water, respectively. *. p<0.05; **. p<0.01; ***. p<0.001.

    图  4   肠道、肠道内容物、饵料及其养殖水源水微生物群落Beta多样性分析

    注:C、CN、F和 W 分别表示肠道、肠道内容物、饵料和养殖水源。

    Figure  4.   Beta diversity analysis of microorganism of intestine, intestinal content, feed and culture source water

    Note:C, CN, F and W represent the samples of intestine, intestinal content, feed and culture source water, respectively.

    图  5   肠道、肠道内容物和饵料、养殖水源水之间的Procrustes分析

    Figure  5.   Procrustes analysis between microorganism of intestine, intestinal content and feed, culture source water

    图  6   饵料、养殖水源水对肠道、肠道内容物微生物群落的贡献

    Figure  6.   Contribution of feed, culture source water to bacteria community in intestine, intestinal content

  • [1]

    WANG A R, RAN C, RING Ø E, et al. Progress in fish gastrointestinal microbiota research[J]. Rev Aquac, 2018, 10(3): 626-640. doi: 10.1111/raq.12191

    [2] 李鸣霄, 强俊, 徐钢春, 等. 不同养殖阶段的大口黑鲈肠道结构和肠道微生物组成变化的比较[J]. 动物营养学报, 2023, 35(9): 5886-5903. doi: 10.12418/CJAN2023.541
    [3] 孟晓林, 聂国兴. 鱼类肠道菌群与机体脂质代谢关系研究进展[J]. 中国水产科学, 2019, 26(6): 1221-1229.
    [4]

    BUTT R L, VOLKOFF H. Gut microbiota and energy homeostasis in fish[J]. Front Endocrinol, 2019, 10(9): 9.

    [5] 翟万营. 南极鱼亚目鱼类肠道、皮肤黏液及其生存水环境微生物结构和功能研究[D]. 上海: 上海海洋大学, 2020: 1-13.
    [6] 朱昊俊, 强俊, 徐钢春, 等. 哈尼梯田稻-渔共作模式下杂交黄颡鱼肠道微生物研究[J]. 水生生物学报, 2021, 45(6): 1232-1242.
    [7]

    KORMAS K A, MEZITI A, MENTE E, et al. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata)[J]. MicrobiologyOpen, 2014, 3(5): 718-728. doi: 10.1002/mbo3.202

    [8] 胡安东, 张明洋, 张飘, 等. 类志贺邻单胞菌感染对鲟鱼肠道菌群多样性的影响[J]. 中国兽医学报, 2020, 40(2): 311-317.
    [9] 王淼, 卢迈新, 衣萌萌, 等. 水体中泼洒复合乳杆菌对尼罗罗非鱼养殖池塘环境、肠道和鳃健康的影响[J]. 水产学报, 2020, 44(4): 651-660.
    [10] 赵峰, 庄平, 张涛, 等. 长江口中华鲟生物学与保护[M]. 北京: 中国农业出版社, 2018: 1-6.
    [11] 罗江, 杜浩, 危起伟, 等. 濒危中华鲟人工群体的繁殖生物学[J]. 中国水产科学, 2020, 27(3): 269-276.
    [12]

    LIU J H, ULLAHKHAN F, JIN S, et al. Indexing serum and mucous biochemical parameters of endangered Chinese sturgeon Acipenser sinensis with implications for health assessment[J]. J Fish Biol, 2024, 104(4): 1180-1192. doi: 10.1111/jfb.15662

    [13] 陈沛, 杨元金, 杜合军, 等. 开口饲料对中华鲟仔鱼生长性能、消化酶活性以及抗氧化和免疫功能的影响[J]. 动物营养学报, 2023, 35(2): 1160-1168. doi: 10.12418/CJAN2023.109
    [14]

    WANG B Z, WU B, LIU X Q, et al. Whole-genome sequencing reveals autooctoploidy in Chinese sturgeon and its evolutionary trajectories[J]. Genom Proteom Bioinf, 2024, 22(1): qzad002. doi: 10.1093/gpbjnl/qzad002

    [15]

    HU Y C, TAN R H, ZHU X, et al. Genome-wide identification, phylogeny and expressional of the Dmrt gene family in Chinese sturgeon (Acipenser sinensis)[J]. Sci Rep, 2024, 14(1): 4231. doi: 10.1038/s41598-024-54899-9

    [16]

    ZHOU M, ZHANG D Z, LONG X M, et al. Biochemical compositions and transcriptome analysis reveal dynamic changes of embryonic development and nutrition metabolism in Chinese sturgeon (Acipenser sinensis)[J]. Aquaculture, 2023, 577: 740003. doi: 10.1016/j.aquaculture.2023.740003

    [17]

    MUHAMMAD M, ZHANG T, GONG S Y, et al. Streptococcus iniae: a growing threat and causative agent of disease outbreak in farmed Chinese sturgeon (Acipenser sinensis)[J]. Pak J Zool, 2020, 52(5): 1931-1939.

    [18] 吴建辉, 陈锦辉, 高春霞. 基于标志放流信息的长江口中华鲟降海洄游和分布特征[J]. 中国水产科学, 2021, 28(12): 1559-1567. doi: 10.12264/JFSC2021-0086
    [19] 徐雪峰. 中华鲟消化系统的发育及消化酶活性变化的研究[D]. 武汉: 华中农业大学, 2006: 15-23.
    [20] 田甜, 张建明, 朱欣, 等. 长江鲟幼鱼黏液、肠道内容物及其养殖水体的微生物菌群结构和潜在病原菌分析[J]. 南方水产科学, 2023, 19(6): 71-83. doi: 10.12131/20230092
    [21] 田甜, 张建明, 朱欣, 等. 长江鲟早期发育阶段肠道菌群塑造机制[J]. 中国水产科学, 2024, 31(5): 546-556.
    [22]

    DULSKI T, ZAKES Z, CIESIELSKI S. Characterization of the gut microbiota in early lifestages of pikeperch Sander lucioperca[J]. J Fish Biol, 2018, 92(1): 94-104. doi: 10.1111/jfb.13496

    [23]

    GAJARDO K, RODILES A, KORTNER T M, et al. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research[J]. Sci Rep, 2016, 6: 30893. doi: 10.1038/srep30893

    [24]

    HUANG Q, SHAM R C, DENG Y, et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors[J]. Mol Ecol, 2020, 29(24): 5019-5034. doi: 10.1111/mec.15699

    [25]

    ZHANG Y P, XIAO X P, ELHAG O, et al. Hermetia illucens L. larvae-associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure[J]. Microb Biotechnol, 2022, 15(10): 2631-2644. doi: 10.1111/1751-7915.14113

    [26] 黄一倍, 杨求华, 李忠琴, 等. 仿刺参 (Apostichopus japonicus) 肠道源乳酸乳球菌 (Lactococcus lactis) 的分离鉴定及其益生特性分析[J]. 海洋与湖沼, 2023, 54(3): 875-884. doi: 10.11693/hyhz20221000260
    [27] 王艳芳. 滇黄精多糖改善大鼠脂代谢紊乱的作用研究[D]. 昆明: 云南中医学院, 2017: 41-52.
    [28] 孙云, 何明旺, 张盼盼, 等. 美洲鳗鲡致病性鲍曼不动杆菌的分离、鉴定及致病性分析[J]. 水产学报, 2020, 44(9): 1561-1571.
    [29]

    ZHANG M J, DOU Y Q, XIAO Z D, et al. Identification of an Acinetobacter lwoffii strain isolated from diseased hybrid sturgeon (Acipenser baerii♀×Acipenser schrenckii♂)[J]. Aquaculture, 2023, 574: 73964.

    [30] 黄莉萍. 黄颡鱼源弗氏柠檬酸杆菌的分离鉴定及病理变化研究[D]. 重庆: 西南大学, 2020: 14-25.
    [31]

    GONG C P, GUO M Y, LOU J F, et al. Identification and characterization of a highly virulent Citrobacter freudii isolate and its activation on immune responses in largemouth bass (Micropterus salmoides)[J]. Fish Shellfish Immun, 2023, 143: 109224. doi: 10.1016/j.fsi.2023.109224

    [32] 蔺宝珠, 赵露, 王浩伊, 等. 半滑舌鳎源维罗纳假单胞菌的分离鉴定及药敏试验[J]. 大连海洋大学学报, 2023, 38(6): 987-993.
    [33] 姜燕, 曹亚男, 柳学周, 等. 许氏平鲉仔鱼、稚鱼、幼鱼肠道微生物群结构特征[J]. 水产科学, 2020, 39(2): 200-208.
    [34] 苟妮娜, 钟明智, 王开锋. 基于16S rRNA高通量测序的野生和养殖多鳞白甲鱼肠道微生物群落组成研究[J]. 西北农业学报, 2021, 30(7): 963-970.
    [35] 刘瑜. 不同类型非淀粉多糖介导肠道菌群及其代谢产物调控大口黑鲈肠道健康机制研究[D]. 湛江: 广东海洋大学, 2023: 95-96.
    [36] 刘欣. 饲料中添加不同形式的乳酸菌M2-4对刺参肠道菌群、代谢及免疫相关基因的影响[D]. 烟台: 鲁东大学, 2023: 1-5.
    [37] 李珊珊, 张伟佳, 高阳, 等. 光唇鱼仔稚幼鱼肠道菌群与养殖水体细菌群落的相关性[J]. 水生生物学报, 2023, 47(8): 1313-1322. doi: 10.7541/2023.2022.0330
    [38] 龚钰雯, 黄春红, 覃日锐, 等. 低pH值养殖水对罗非鱼肠道菌群结构的影响[J]. 黑龙江畜牧兽医, 2024(8): 117-125.
    [39] 马兴宇, 唐忠林, 陈树桥, 等. 转食饲料对大口黑鲈幼鱼的存活率、抗氧化酶和消化酶活性及肠道菌群的影响[J]. 中国水产科学, 2024, 31(4): 403-415.
    [40]

    ZAN Z J, CHEN K, WANG H Y, et al. Effects of a multistrain probiotic on the growth, immune function and intestinal microbiota of the tongue sole Cynoglossus semilaevis[J]. Aquaculture, 2023, 575: 739813. doi: 10.1016/j.aquaculture.2023.739813

  • 期刊类型引用(23)

    1. 冯元泰,史荣君,李俊伟,区又君,齐占会,黄洪辉,贾旭颖. 不同日龄四指马鲅幼鱼肠道结构和菌群组成变化分析. 南方水产科学. 2025(01): 153-163 . 本站查看
    2. 吴子宜,赖文杰,邹振江,宋亚康,黄舜梅,汤胜亮,卢丹琪,张勇. 四指马鲅热休克蛋白70基因(HSP70)表达分析. 海南热带海洋学院学报. 2024(02): 1-10+37 . 百度学术
    3. 段国庆,周华兴,汪焕,凌俊,胡玉婷,潘庭双,杨敏,邬凌云,江河. 60日龄瓦氏黄颡鱼选育群体形态性状对体重的影响分析. 安徽农业大学学报. 2023(01): 78-85 . 百度学术
    4. 江梁正,王珺,区又君,周文礼,温久福,朱长波,李俊伟,陈朝. 2种盐度池塘养殖四指马鲅的肌肉营养组成分析. 中国渔业质量与标准. 2023(02): 11-17 . 百度学术
    5. 田田. 人工养殖斑鳜(Siniperca scherzeri)形态性状与体质量的相关性研究. 水产学杂志. 2023(03): 68-74 . 百度学术
    6. 陈爱华,董义超,吕曼,李泉城,李蒙,石英,刘明. 墨瑞鳕幼鱼形态性状对体质量通径分析及生长曲线拟合. 淡水渔业. 2023(05): 61-67 . 百度学术
    7. 周胜杰,于刚,马振华. 养殖波纹唇鱼雌鱼形态性状对体质量的相关性及通径分析. 海洋科学. 2023(07): 44-52 . 百度学术
    8. 余家旺,王耀嵘,林星桦,沈奕君,李广丽,黄洋,朱春华,田昌绪. 12月龄多鳞鱚形态性状对体质量的影响. 广东海洋大学学报. 2022(01): 137-143 . 百度学术
    9. 王晓龙,李莉,王雪,菅玉霞,高凤祥,郭文,宋宗诚,岳新璐,胡发文. 6月龄斑头鱼形态性状与体质量的相关性和通径分析. 渔业研究. 2022(01): 52-59 . 百度学术
    10. 方伟,陈明强,李有宁,马振华,赵旺,温为庚,邓正华,于刚,王雨. 凸加夫蛤(Gafrarium tumidum)形态性状对体质量性状的相关性及通径分析. 中国渔业质量与标准. 2022(02): 47-53 . 百度学术
    11. 袁岩聪,何航,刘瑛,田庆兵,罗辉,章杰. 不同营养型水库对鳙形态性状和风味物质的影响. 淡水渔业. 2022(03): 91-97 . 百度学术
    12. 李俊伟,罗志平,区又君,李加儿,胡瑞萍,温久福. 不同规格黄鳍鲷的形态性状与体质量的相关性研究. 生态科学. 2022(04): 9-15 . 百度学术
    13. 闫卉果,董智玲,李雨,马婷婷,罗辉,叶华,何文平. 基于通径分析和灰色关联分析岩原鲤形态特征与体质量的关系. 西南大学学报(自然科学版). 2022(05): 74-81 . 百度学术
    14. 虞为,林黑着,马振华,吴洽儿,陈雪晴,杨育凯,黄小林,黄忠,赵旺,李涛,周传朋. 4月龄豹纹鳃棘鲈形态性状对体质量的影响分析. 南方水产科学. 2022(06): 146-151 . 本站查看
    15. 方伟,周胜杰,赵旺,杨蕊,胡静,于刚,马振华. 黄鳍金枪鱼5月龄幼鱼形态性状对体质量的相关性及通径分析. 南方水产科学. 2021(01): 52-58 . 本站查看
    16. 周胜杰,杨蕊,于刚,吴洽儿,马振华. 青干金枪鱼和小头鲔循环水养殖生长研究. 水产科学. 2021(03): 339-346 . 百度学术
    17. 吴新燕,梁宏伟,罗相忠,沙航,邹桂伟. 不同月龄长丰鲢形态性状对体质量的影响. 南方水产科学. 2021(03): 62-69 . 本站查看
    18. 牟恩镟,申屠琰,熊玉凤,朱卫东,王志铮. 池塘专养模式下中华鳖养成品形态性状对体质量和净体质量的影响效应. 浙江海洋大学学报(自然科学版). 2021(01): 22-28+79 . 百度学术
    19. 牛莹月,罗志平,区又君,蓝军南,温久福,李加儿,周慧. 不同盐度对四指马鲅幼鱼存活及鳃组织形态变化的影响. 南方农业学报. 2021(06): 1719-1726 . 百度学术
    20. 樊佳佳,马冬梅,朱华平,黄樟翰,黄剑华,李辉安. F_5代禾花鲤形态性状对体质量的影响. 广东农业科学. 2021(08): 124-130 . 百度学术
    21. 王雅丽,王语同,孙晶,卢运超,陈天楠,王于众,舒锐,吴丛迪,胡鲲. 可控式集装箱养殖模式对乌鳢营养组成、组织形态及肠道菌群的影响. 海洋渔业. 2021(05): 573-585 . 百度学术
    22. 童立豪,谭凡民,罗砚,倪孔平. 红树林人工湿地生态养殖黄鳍鲷形态性状对体质量的影响. 广西科学院学报. 2021(03): 248-255 . 百度学术
    23. 蓝军南,区又君,温久福,李俊伟,牛莹月,李加儿. 四指马鲅性逆转过程初步研究. 南方水产科学. 2020(06): 67-74 . 本站查看

    其他类型引用(7)

推荐阅读
牡蛎酶解产物对糖皮质激素诱导骨质疏松大鼠的改善作用
马文语 et al., 南方水产科学, 2025
不同脱腥方法对薛氏海龙肽粉的脱腥效果比较
陈茂森 et al., 南方水产科学, 2025
Lh原油和0# 柴油乳化液对凡纳滨对虾肝胰腺抗氧化酶活性及相关功能基因表达的影响
沈楚焰 et al., 南方水产科学, 2025
抗副溶血弧菌卵黄抗体制备及其与不同血清型菌株交叉反应研究
陈静妮 et al., 南方水产科学, 2024
湿磨辅助制备淀粉-脂质复合物及其结构和性能研究
DONG Ying et al., JOURNAL OF HENAN UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION), 2023
Bmscs来源的外泌体mir-515-5p可下调tlr4/nlrp3通路抑制ra-fls
蔡东峰 et al., 遵义医科大学学报, 2025
2d mon1.2-rgo stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation
Yu, Huimin et al., ADVANCED FUNCTIONAL MATERIALS, 2023
Alkbh5 activates fak signaling through m6a demethylation in itgb1 mrna and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer
Sun, Rui et al., THERANOSTICS, 2023
Astaxanthin alleviates hepatic lipid metabolic dysregulation induced by microcystin-lr
TOXINS, 1905
Effects of different forms of statins on lipid profile in hyperlipidemic patients
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
Powered by
图(6)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  12
  • PDF下载量:  18
  • 被引次数: 30
出版历程
  • 收稿日期:  2024-10-31
  • 修回日期:  2024-12-30
  • 录用日期:  2025-01-22
  • 网络出版日期:  2025-02-13
  • 刊出日期:  2025-04-04

目录

/

返回文章
返回