裂褶菌多糖对凡纳滨对虾生长、免疫和肠道菌群的影响

蒋魁, 胡晓娟, 徐创文, 洪敏娜, 刘曦瑶, 麦晓勇, 陈海谊, 杨铿

蒋魁, 胡晓娟, 徐创文, 洪敏娜, 刘曦瑶, 麦晓勇, 陈海谊, 杨铿. 裂褶菌多糖对凡纳滨对虾生长、免疫和肠道菌群的影响[J]. 南方水产科学, 2023, 19(5): 95-103. DOI: 10.12131/20230041
引用本文: 蒋魁, 胡晓娟, 徐创文, 洪敏娜, 刘曦瑶, 麦晓勇, 陈海谊, 杨铿. 裂褶菌多糖对凡纳滨对虾生长、免疫和肠道菌群的影响[J]. 南方水产科学, 2023, 19(5): 95-103. DOI: 10.12131/20230041
JIANG Kui, HU Xiaojuan, XU Chuangwen, HONG Minna, LIU Xiyao, MAI Xiaoyong, CHEN Haiyi, YANG Keng. Effects of schizophyllan on growth, immunity and intestinal microflora of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(5): 95-103. DOI: 10.12131/20230041
Citation: JIANG Kui, HU Xiaojuan, XU Chuangwen, HONG Minna, LIU Xiyao, MAI Xiaoyong, CHEN Haiyi, YANG Keng. Effects of schizophyllan on growth, immunity and intestinal microflora of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(5): 95-103. DOI: 10.12131/20230041

裂褶菌多糖对凡纳滨对虾生长、免疫和肠道菌群的影响

基金项目: 广东省重点领域研发计划项目 (2021B0202040001);2021年广东省驻镇帮镇扶村农村科技特派员项目 (水产健康养殖技术集成与示范);国家虾蟹产业技术体系 (CARS-48);2023年乡村振兴战略专项——农业科技发展及资源环境保护管理项目 (2023KJ149);中国水产科学研究院基本科研业务费专项资金 (2020TD54);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD08)
详细信息
    作者简介:

    蒋 魁 (1990—),男,工程师,硕士,研究方向为水产养殖技术及病害防控。E-mail: jiangkui0514@163.com

    通讯作者:

    杨 铿 (1975—),男,副研究员,研究方向为水产健康养殖技术。E-mail: yangkeng66@163.com

  • 中图分类号: S 963

Effects of schizophyllan on growth, immunity and intestinal microflora of Litopenaeus vannamei

  • 摘要:

    裂褶菌多糖是裂褶菌 (Schizophyllum communer Fr.) 子实体、菌丝体或发酵液提取的具有β-(1,6) 分支的 β-(1,3)-D葡聚糖。为了探究裂褶菌多糖饲养凡纳滨对虾 (Litopenaeus vannamei) 的效果,选用12口凡纳滨对虾养殖池,按照裂褶菌多糖的添加量 (质量分数),分别设置0% (C组)、0.5% (S1组)、1.0% (S2组) 和2.0% (S3组) 4组进行56 d的饲养实验,分析对虾的生长、血清理化、免疫指标和肠道菌群等变化。结果显示,S2组的终末体质量、平均体质量增长率和特定生长率均显著高于C、S1和S3组 (P<0.05);S2、S3组内层上皮细胞的高度显著高于C和S1组 (P<0.05)。与对照组相比,S2和S3组血清中的尿酸含量显著降低 (P<0.05),S1组则无显著性差异 (P>0.05)。S2和S3组血清中溶菌酶、总一氧化氮合成酶、酚氧化酶和碱性磷酸酶的活性均显著高于对照组 (P<0.05)。S2组过氧化氢酶、超氧化物歧化酶活性和总抗氧化能力显著高于对照组 (P<0.05);各实验组血清丙二醛含量均有不同程度的降低 (P>0.05)。肠道菌群Ace、Chao1、Shannon、Simpson指数均无显著性差异 (P>0.05)。在门水平上,与对照组相比,添加裂褶菌多糖的各实验组变形菌门相对丰度均下降,软壁菌门升高。在属水平上,与对照组相比,S2组中FormosaPseudoruegeriaMuricauda和鲁杰氏菌属 (Ruegeria) 相对丰度均显著升高 (P<0.05),而弧菌属 (Vibrio) 相对丰度显著降低 (P<0.05)。结果表明,在饲料中添加1.0%的裂褶菌多糖能显著提升凡纳滨对虾的生长性能、免疫力和抗氧化能力,增加肠道有益菌丰度,降低有害菌丰度。

    Abstract:

    Schizophyllan (SPG) is a type of polysaccharide with β-(1,6) branching β-(1,3)-D-glucan, extracted from the fruiting body, mycelium or fermentation broth of Schizophyllum communer. In order to study the effects of SPG feed on the cultivation of Litopenaeus vannamei, we selected 12 L. vannamei breeding ponds, and set up four groups according to the addition amounts of SPG [Group C (0%), Group S1 (0.5%), Group S2 (1.0%) and Group S3 (2.0%)] for a 56-day experiment, then we investigated the growth, blood clearance, immune indicators and intestinal microflora. The results show that the final body mass, average weight gain rate and specific weight gain rate of Group S2 were significantly higher than those of Group C, S1 and S3 (P<0.05). The height of inner epithelial cells in Group S2 and S3 were significantly higher than those in Group C and S1 (P<0.05). Compared with Group C, the contents of serum uric acid (UC) in Group S2 and S3 were significantly lower (P<0.05), but there was no significant difference in Group S1 (P>0.05). The activities of lysozyme (LZM), total nitric oxide synthase (TNOS), phenol oxidase (PO) and alkaline phosphatase (AKP) in serum of Group S2 and S3 were significantly higher than those in Group C (P<0.05). The activities of catalase (CAT), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in Group S2 were significantly higher than those of Group C (P<0.05). Compared with the control group, the contents of serum malondialdehyde (MDA) in all experimental groups decreased to different extents (P>0.05). There was no significant difference in Ace, Chao1, Shannon and Simpson indexes of intestinal flora (P>0.05). At phylum level, compared with Group C, the abundance of Proteobacteria in the experimental groups added with SPG decreased, while that of Tenericutes increased. At genus level, compared with Group C, the abundances of Formosa, Pseudoruegeria, Muricauda and Rugella in Group S2 increased significantly (P<0.05), while the abundance of Vibrio decreased significantly (P<0.05). In conclusion, adding 1.0% SPG in feed can improve the growth performance, immunity and antioxidant capacity of L. vannamei, increase the proportion of beneficial bacteria and reduce the proportion of harmful bacteria in intestinal tract.

  • 虾青素是一种脂溶性酮式类胡萝卜素[1],其分子结构中含有11个共轭双键、2个β-紫罗兰酮环和羟基。虾青素因具有抗氧化[2-3]、抗炎[4-5]和免疫调节[6-7]等作用而受到广泛关注,它在保护人类和动物免受包括心血管疾病、糖尿病、癌症和一些免疫系统疾病方面具有巨大的应用潜力[8],已被广泛应用于食品、膳食补充剂、药品和化妆品等各个领域。

    虾青素在自然界的主要存在形式是与不同种类脂肪酸结合的虾青素酯[9],红球藻 (Haematococcus) 中虾青素组成约为70%的单酯形式、25%的双酯形式和5%的游离形式[10]。天然的虾青素酯存在成分复杂、功能差异大等问题[11],且大多数动物体内不能合成虾青素,只能从食物等其他途径获得[12]。此外,有研究表明游离形式虾青素的生物利用度更高、更容易被机体吸收利用[13],因此将虾青素酯水解制备游离虾青素,是提升虾青素产品品质和功能活性的一个重要研究方向。虾青素酯的水解反应一般通过强碱皂化或酶解的方式进行[14]。皂化法是水解虾青素酯的传统方法[15-16],过程中需要使用强碱溶液,反应条件剧烈,反应过程的废液会造成环境污染隐患,并且虾青素对热敏感,高温反应条件可能会导致虾青素降解,并容易产生虾红素等副产物[17-18]。酶解法具有反应条件温和、水解效率高、副产物少、产物生物安全性好等优势,是皂化法的理想替代方法[19]。孔凡华等[20]通过比较不同脱脂方法所测得的虾青素含量,总结出酶解法对虾青素的含量影响较小,先酶解再进行液相色谱分析可以准确定量样品中虾青素的含量。

    脂肪酶 (EC 3.1.1.3) 是一种能够水解三酰基甘油酯的酶,也可催化酯化、酯交换等反应。关于使用脂肪酶水解虾青素酯已有相关研究。Zhao等[21]使用在毕赤酵母 (Pichia sp.)中表达的碱性脂肪酶用于水解虾青素酯,以吐温80作为乳化剂,在pH 7.0、温度28 ℃、4.6 U·μg−1脂肪酶剂量和0.1 mol·L−1磷酸钠缓冲液的条件下,7 h内可回收63.2%的游离虾青素。Gao等[22]在枯草芽孢杆菌(Bacillus subtilis)中表达了一种新型的链霉菌脂肪酶OUC-Sb-lip12用于水解虾青素酯,100 μg虾青素酯中虾青素得率为61.43 μg。现有研究表明利用脂类水解酶酶解制备虾青素的得率较高,但存在反应时间较长、菌株来源安全性较低的问题。因此,目前需要找到一种水解效率高、反应过程温和、反应副产物少、来源安全的酶,快速制备游离虾青素,为后续虾青素的综合利用提供参考。

    本文从浅紫色链霉菌 (Streptomyces violascens) ATCC 27968中发掘Sv-lip5脂肪酶,并使用食品级表达系统枯草芽孢杆菌WB800对其进行克隆表达。探究了其酶学性质及其在虾青素酯水解中的应用,进一步丰富了虾青素酯水解酶库,实现了在短时间内大量制备游离虾青素,为提升虾青素的功能活性和生物利用度提供有益参考。

    实验所用pP43NMK质粒及枯草芽孢杆菌WB800感受态细胞均为本实验室保藏;用于基因克隆的大肠杆菌 (Escherichia coli) Trelief TM5α购自北京天根生化科技。

    虾青素酯 (虾青素酯质量分数为10%) 购自云南爱尔发生物技术股份有限公司,纯度高于96%;虾青素购于上海阿拉丁生化科技股份有限公司;对硝基苯酚棕榈酸酯购自美国SIGMA公司;胶回收试剂盒购自美国OMEGA公司;质粒提取试剂盒购自北京天根生化科技有限公司;色谱级甲醇和甲基叔丁基醚用于液相检测;其余试剂如二氯甲烷、异丙醇等均为分析纯。

    BCM-1000型生物净化工作台 (苏州净化公司);DYY-6C型核酸电泳仪 (北京市六一仪器厂);5804R高速冷冻离心机 (Eppendorf公司);Thermo Scientific Multiskan FC酶标仪 (Thermo Scientific公司);LC-20A高效液相色谱仪 (日本岛津公司)。

    基于本实验室的浅紫色链霉菌 ATCC 27968的测序结果,找到具有脂肪酶活性的片段,对其进行克隆表达,将蛋白命名为Sv-lip5。根据已有的分析方法对脂肪酶DNA序列进行分类,使用Clustal W进行多序列比对,利用ESPript 3.0网站对序列的比对结果进行在线展示和输出,使用ExPaSy (https://web.expasy.org/protparam/) 计算理论分子量和等电点。

    根据脂肪酶基因序列及载体序列,使用SnapGene软件进行引物设计 (表1)。

    表  1  引物设计
    Table  1  Sequences of primers
    引物名称
    Primer name
    引物序列 (5'—3')
    Primer sequence (5'—3')
    Sv-lip5-R cagtggtggtggtggtggtgccaggccagttgggc
    Sv-lip5-F taacacatgcctcagctgcagtgcacggccgggca
    Bone-R tgcagctgaggcatgtgttac
    Bone-F caccaccaccaccaccactgatgaaagcttggcgtaatc
    Tong-R cacacaggaaacagctatgacc
    Tong-F gagttgctagtaacatctgaccg
    下载: 导出CSV 
    | 显示表格

    以Sv-lip5片段为模板,利用表1设计的引物进行扩增,扩增完成后以无缝连接的形式构建重组质粒,测序正确后提取质粒pP43NMK-Sv-lip5,导入感受态细胞WB800中表达蛋白。

    利用质粒上His-tag标签蛋白与镍柱结合的性质对Sv-lip5纯化,依次使用体质量分数为20%的乙醇、水冲洗柱子,后用6倍柱体积的Tris-HCl (0.1 mol·L−1) 缓冲液平衡镍柱,将冻干后复溶的酶液过膜后分批加入平衡后的镍柱中,确保酶与镍柱充分结合。使用不同浓度的咪唑Tris-HCl缓冲液洗脱,收集不同浓度的洗脱液,浓缩后通过SDS-PAGE蛋白电泳验证纯化结果。

    使用对硝基苯酚棕榈酸酯进行酶活性测定。吸取甘氨酸氢氧化钠 (Gly-NaOH) 缓冲液 (0.1 mol·L−1, pH 9.0) 500 μL于2 mL EP管中,加入50 μL酶液和20 μL pNPP底物 (0.02 mol·L−1),混合后于40 ℃水浴锅中反应5 min,加入330 μL 1%的SDS缓冲液终止反应。取200 μL反应液于405 nm测定吸光度。

    脂肪酶酶活性 (U) 单位的定义:在一定的反应条件下,每分钟水解底物释放1 μmol对硝基苯酚(p-nitrophenol, pNP) 所需的酶量定义为一个酶活单位,即1 U。

    取等量酶液在不同温度 (25、30、35、40、45、50、55、60 ℃) 下水解对硝基苯酚棕榈酸酯,测定酶活性。将最适温度下的活性定义为100%,计算其他温度下的相对酶活。取等量酶液分别在不同温度 (35、40、45、50 ℃) 下孵育42 h,在一定时间间隔取样,最适条件下测定酶活,同一温度下以0 h酶活定义为100%,分别计算不同温度下酶的活性。

    选取100 mmol·L−1的pH 4.0~6.0的柠檬酸-柠檬酸钠缓冲液、pH 6.0~8.0的磷酸盐缓冲液、pH 8.0~9.0的Tris-HCl缓冲液、pH 9.0~10.0的Gly-NaOH缓冲液作为酶反应的缓冲液进行反应,测定不同pH下的酶活性。将最适pH下的活性定义为100%,计算其他pH条件下的相对酶活。取等量酶液于上述缓冲液中孵育96 h,在不同时间间隔取样,在最适条件下测定酶活,同一pH下酶活最高的时间点的活性定义为100%,分别计算在不同pH缓冲液中脂肪酶的活性。

    在酶液中分别加入钴离子 (Co2+)、钾离子 (K+)、锌离子 (Zn2+)、镁离子 (Mg2+)、镍离子 (Ni2+)、锰离子 (Mn2+)、钡离子 (Ba2+)、钠离子 (Na+)、钙离子 (Ca2+)、铜离子 (Cu2+)、铁离子 (Fe3+) 及化学试剂乙二胺四乙酸二钠 (Na2-EDTA),使其终浓度为1和10 mmol·L−1,将其置于37 ℃下保存1 h,进行酶活测定,探究金属离子及化学试剂对脂肪酶Sv-lip5的影响。在酶液中添加表面活性剂 (吐温60、吐温80、司盘20、司盘80、曲拉通X-100),探究表面活性剂对脂肪酶活性的影响。对照组中不添加金属离子或化学试剂,定义其活性为100%,反应体系和反应条件与实验组相同,分别计算添加金属离子及表面活性剂的实验组中脂肪酶活性。

    利用Sv-lip5进行虾青素酯的水解,水解反应体系为2 mg的雨生红球藻 (Haematococcus pluvialis) 油,溶于500 μL的无水乙醇中,超声加速溶解。25 mL的棕色具塞三角瓶作为反应容器,加入500 μL的底物,5 mL的Gly-NaOH缓冲液,加入不同量的酶粉后,充入氮气后密封,将其置于40 ℃水浴摇床中进行反应。

    实验设定pH为4.0~10.0,加酶量设置为80~900 mg,反应时间设置为0~25 h,分析不同pH、乙醇与缓冲液比例、加酶量和反应时间对水解率的影响。

    反应结束后取500 μL反应液,使用体积比为1∶2的异丙醇和二氯甲烷进行萃取,离心去上清,收集有机相并氮吹至近干,后用1∶1的色谱纯甲醇和甲基叔丁基醚1 mL复溶,过0.22 μm有机滤膜收集样品至棕色液相上样瓶中,避光保存待测。通过高效液相色谱 (HPLC) 检测虾青素的生成量。

    HPLC检测所用色谱柱为YMC-Carotenoid-C30 (4.6 mm×250 mm, 5 µm),紫外检测波长为475 nm,流动相为甲基叔丁基醚 (A) 和甲醇 (B),采用线性梯度洗脱的方式[23-24],0~15 min,B为90%;15~25 min,B从90%降至40%;25~35 min,B由40%重新升至90%。流速设置为1 mL·min−1,柱温箱35 ℃,进样量20 μL。

    采用Origin Pro软件进行数据统计和图片处理,数据均为3次平行。

    在杆菌状链霉菌ATCC 27968[25]测序结果中找到脂肪酶Sv-lip5的基因序列,其序列长度为1 014 bp,该蛋白编码了338个氨基酸,预测分子量为34.8 kD、等电点为5.36,对其进行脂肪酶多序列比对 (图1),结果表明Sv-lip5属于脂肪酶第四家族,具有第四家族的特征。

    图  1  Sv-lip5进化树分析
    Fig. 1  Phylogenetic analysis of Sv-lip5

    阳性克隆验证结果见图2-a。验证正确后的菌株在LB培养基中发酵12 h后,收集发酵液进行离心,上清液即为粗酶液。使用镍柱对粗酶进行纯化,用不同浓度的咪唑Tris-HCl缓冲液 (pH 8.0) 进行洗脱,收集各浓度洗脱液,浓缩后利用SDS-PAGE蛋白电泳进行验证,验证结果见图2-b,在0.1 mol·L−1的咪唑浓度下洗脱出了目标蛋白条带,蛋白大小与预测分子量相近,表明蛋白成功纯化。

    图  2  Sv-lip5的核酸电泳结果 (a) 和SDS-PAGE蛋白纯化结果 (b)
    Fig. 2  Nucleic acid electrophoresis results (a) and SDS-PAGE protein purification results (b) of Sv-lip5

    在25~65 ℃测定了Sv-lip5的最适温度和温度稳定性 (图3-a),可以看出Sv-lip5的最适温度为45 ℃,EST4也显示出相同的最适温度,并且可在较宽的温度范围内高效使用,适用于较高温度下的生物技术应用[26]。在25~45 ℃内,酶活逐渐增强至最大值,相对酶活保持在80%以上,之后随着温度的升高酶活逐渐下降,在65 ℃时相对酶活呈现较低状态 (22.3%)。酶的温度稳定性见图3-b,在缓冲液中孵育9 h后,40 ℃时的酶活迅速下降。经孵育42 h后,所有实验组残余酶活均在36.8%以上。

    图  3  Sv-lip5的酶学性质分析
    Fig. 3  Analysis of enzymatic properties of Sv-lip5

    本实验在pH 4.0~10.6内考察了Sv-lip5的最适pH及pH稳定性 (图3-c),表明Sv-lip5在pH为10.0的条件下表现出最佳活性,而在柠檬酸-柠檬酸钠缓冲液中活性普遍较低,最高活性仅23.7%,因此Sv-lip5对底物对硝基苯酚棕榈酸酯的水解活性表现出碱性偏好性。pH会影响酶活性中心基团的解离状态,当酶处于最适pH条件下,其活性基团处于适合与底物结合的解离状态;当其处于高于或低于最适pH的环境时,其活性基团解离状态改变,酶活性相应降低。pH也会影响酶的稳定性,过高或过低的pH会改变酶活性中心的构象,使酶活性降低。Sv-lip5在pH 9.0~10.0内均有较高的酶活,体现出碱性偏好性;但在pH稳定性的测定中,长时间处于pH 10.0的强碱环境中,酶活性有较明显下降,可能pH 10.0的环境对酶活性中心的构象有一定改变 (图3-c3-d)。Est16也被发现是碱性酯酶,其最适pH为8.0~9.0,可在7.0~11.0的宽pH范围内保持活性稳定[27]。当pH高于10.0时,Sv-lip5的相对酶活急速下降,当pH为10.6时残余酶活为50.4%。同时,在pH同为8.0的不同缓冲液条件下,Sv-lip5的酶活也表现出差异性,这种差异性是酶活性测定中的普遍现象[28]。叶凤凌等[29]阐述了pH环境对于植物多酚抑制氧合酶的影响,其中相同pH条件下的硼酸盐缓冲液、磷酸盐缓冲液以及Tris-HCl缓冲液中酶活性存在较大差别,可能是因为各缓冲液中不同的阴离子种类对酶活性的影响程度不同。

    图3-e的金属离子实验表明,1 mmol·L−1的Ca2+和10 mmol·L−1的Co2+和Ba2+增强了酶活性,在解脂耶氏酵母 (Yarrowia lipolytica) 中克隆表达的脂肪酶YLIP15也表明Ca2+具有增强酶活性的作用,而Mg2+则对YLIP4、YLIP5、YLIP7脂肪酶活性表现出抑制作用[30],与本实验结果一致。10 mmol·L−1浓度下除K+和Ni2+显著降低了酶活性外,其余金属离子都显示出轻微抑制。添加表面活性剂会显著影响Sv-lip5的活性,司盘20、司盘80、吐温60、吐温 80以及曲拉通X-100均对其活性有一定程度的抑制作用 (图3-f),司盘20和吐温60使其活性分别降低了25.7%和55.3%,可能是因为表面活性剂抑制了分子间和分子内的蛋白质相互作用[31]

    本实验结果表明Sv-lip5对虾青素酯具有显著的水解作用,反应前后物质对比见图4-a。反应前22.5~30 min内全部为虾青素酯,经过Sv-lip5作用后,可将其大部分转化为第5.5分钟出峰的游离虾青素。虾青素酯水解反应pH优化反应结果见图4-b。由于Sv-lip5是碱性脂肪酶,在碱性条件下显示出最佳活性且稳定性较好。在pH为9.0的缓冲液中水解反应效果最佳,反应12 h后可产生17.18 μg虾青素,但在其最适pH 10.0的条件下该酶的水解效果反而显著降低,仅产生5.03 μg虾青素,可能是由于该酶在pH 10.0下的稳定性较差,12 h的反应时间导致酶活性降低,虾青素产量也随之减少。碱性脂肪酶Lipase-YH也存在相同现象,其在pH 6.0~7.0内虾青素产量逐渐增加,但在偏碱性 (pH 8.0~9.0) 条件下却逐渐减少[32],可能是碱性环境下虾青素存在一定程度的降解。

    图  4  Sv-lip5在虾青素酯水解反应中的条件优化
    Fig. 4  Optimization of reaction conditions of hydrolysis of astaxanthin ester by Sv-lip5

    乙醇和缓冲液比例对于虾青素酯水解具有一定的影响 (图4-c),当乙醇和缓冲液比为1∶12时,水解效果最佳,可产生27.63 μg虾青素,其余比例下的水解效果均比较微弱,虾青素产量均小于10.98 μg。

    通过调整酶量进行虾青素酯的水解研究 (图4-d),当添加80、160、240 mg脂肪酶时,虾青素的含量波动较小,水解效率较差,最高虾青素产量仅15.68 μg。当加酶量为320 mg时,虾青素产量有微弱的提升,第12小时水解率最高,可获得34.31 μg虾青素。在反应体系中添加400和500 mg酶粉时,水解效果有明显的转变。向反应体系中添加500 mg酶粉,第1小时的虾青素产量就可达87.95 μg,水解前后对比结果 (图4-a) 显示,反应完全时可以得到138.27 μg的虾青素,水解率为95.13%。Gao等[22]克隆表达的OUC-Sb-lip12也可用于虾青素酯的水解,在第12小时水解率达96.29%,通过优化时间与加酶量,本研究中Sv-lip5在12 h内水解率可达98.27%,200 μg虾青素酯中游离虾青素产量为147.48 μg,高于Gao等[22]报道的OUC-Sb-lip12水解游离虾青素产量,可能是由于反应过程中虾红素等副产物产生较少。经测定,Sv-lip5的比酶活为12.46 U·g−1,当酶添加量增加至一定程度后,其可高效水解虾青素酯。后续可以通过优化培养基成分与酶表达体系效率,进一步降低酶制备成本,保障虾青素酯的低成本高效水解;同时,可通过固定化[33-34]等方式提高Sv-lip5的回收利用率,进一步降低游离虾青素的制备成本。此外,Huang等[32]通过优化发酵pH、培养基配方以及甲醇浓度提高酶活性,使其适合大规模生产虾青素,旨在开发新型高效的酶工艺以减少成本消耗。本实验也可通过进一步水解体系优化等手段逐步完善虾青素酯水解反应,弥补光、热以及氮气充入不均一性对虾青素的部分降解。

    当酶量添加量较多时,酶粉与底物充分接触,1 h内就可达到较高的水解率,随着时间的延长,虾青素酯仍可继续降解,但后续降解速率逐渐变缓。当酶量添加较少时,虾青素的水解受到极大限制,在第12或第15小时可达到最大水解率,随着时间的延长,生成的虾青素也会受到环境因素的影响部分分解,19 h后部分曲线有下降趋势 (图4-d)。因此加酶量和时间对虾青素酯的水解相互影响。只有当加酶量到达一定限度时,水解反应才能以较高速率进行,且加酶量的增长可加速水解进程。

    本研究克隆表达了来自浅紫色链霉菌的脂肪酶Sv-lip5,该酶的蛋白分子量约34.8 kD,比活力为12.46 U·g−1,在45 ℃、pH为10.0的条件下显示出最佳酶活力,可用于虾青素酯的水解,水解产物为游离虾青素。该酶可耐碱性环境,从而避免了反应过程中杂菌的生长,通过优化反应条件得出,当乙醇与缓冲液体积比为1∶12、反应pH为9.0、加酶量为900 mg、在40 ℃下反应12 h,200 μg虾青素酯最终可收获147.48 μg游离虾青素。

  • 图  1   对照组与实验组肠道切片对比 (200×)

    a. C组 (0%) 肠道切片;b. S1 组 (0.5%) 肠道切片;c. S2 组 (1.0%) 肠道切片;d. S3 组 (2.0%) 肠道切片;A、B、C为不同上皮细胞高度。

    Figure  1.   Comparison of intestinal slices between control group and test groups (200×)

    a. Intestinal slices of Group C; b. Intestinal slices of Group S1; c. Intestinal slices of Group S2; d. Intestinal slices of Group S3; A, B and C represent different epithelial cell heights.

    图  2   对照组与实验组肠道上皮细胞高度

    Figure  2.   Height of intestinal epithelial cells in control and test groups

    图  3   不同浓度裂褶菌多糖饲喂凡纳滨对虾肠道菌群在门水平的相对丰度

    Figure  3.   Relative abundance of predominant phylum of intestinal microflora of L.vannamei fet with different concentrations of schizophyllan

    图  4   不同水平裂褶菌多糖饲喂凡纳滨对虾肠道菌群属水平的相对丰度

    Figure  4.   Relative abundance of predominant genus of intestinal microflora of L.vannamei fet with different concentrations of schizophyllan

    表  1   裂褶菌多糖对凡纳滨对虾生长性能比较

    Table  1   Comparison of effects of schizophyllan on growth performance of L. vannamei

    指标     
    Index     
    裂褶菌多糖添加量 Addition amounts of schizophyllan
    0% (C)0.5% (S1)1.0% (S2)2.0% (S3)
    初始体质量 Initial body mass/g 1.85±0.03 1.85±0.03 1.85±0.03 1.85±0.03
    终末体质量 Final body mass/g 18.44±3.34a 20.33±0.45a 23.13±0.31b 19.90±2.55a
    体质量增长率 WGR/% 896.94±180.42a 999.10±24.37a 1 150.45±16.51b 975.68±137.90a
    特定生长率 SGR/(%·d−1) 4.09±0.33a 4.28±0.40a 4.51±0.24b 4.23±0.23a
    饲料系数 FCR 1.45±0.01 1.47±0.02 1.45±0.02 1.46±0.03
    成活率 SR/% 70.15±0.10a 70.12±0.11a 75.37±0.32b 72.21±0.13c
    摄食量 FI/g 18.89±0.43a 21.44±0.36b 25.77±0.38c 21.23±0.40b
    终末体长 Final body length/cm 11.03±1.16 11.75±0.35 12.25±0.64 11.88±0.88
    注:组间显著性差异采用不同小写字母表示 (P<0.05),下同。 Note: Different lowercase letters indicate significant differences between groups (P<0.05); the same below.
    下载: 导出CSV

    表  2   裂褶菌多糖对凡纳滨对虾血清生化指标的影响

    Table  2   Effect of schizophyllan on serum biochemical indexes of L. vannamei

    指标     
    Index     
    裂褶菌多糖添加量 Addition amount of schizophyllan
    0% (C)0.5% (S1)1.0% (S2)2.0% (S3)
    总蛋白 TP/(g·L−1) 52.71±13.01 59.49±11.00 69.07±4.48 53.91±7.18
    胆固醇 CHO/(mmol·L−1) 0.72±0.21 0.69±0.10 0.64±0.20 0.74±0.39
    尿酸 UA/(μmol·L−1) 20.17±5.95a 16.06±3.51ab 12.95±2.09b 10.75±2.44b
    谷草转氨酶 AST/(U·L−1) 382.00±142.68 443.67±100.81 474.33±140.63 427.33±143.12
    谷丙转氨酶 ALT/(U·L−1) 431.67±55.37a 247.33±91.15b 302.00±61.29ab 230.67±123.45b
    溶菌酶 LZM/(U·mL−1) 0.05±0.01a 0.09±0.03ac 0.14±0.04b 0.13±0.03bc
    酚氧化酶 PO/(U·mL−1) 0.30±0.11a 0.52±0.03b 0.47±0.03b 0.41±0.05b
    碱性磷酸酶 ALP/(U·mL−1) 0.64±0.32a 1.43±0.39b 1.70±0.24b 1.43±0.03b
    总一氧化氮合酶 TNOS/(U·mL−1) 12.89±1.44a 13.75±0.83ac 15.59±1.64bc 16.23±1.04b
    超氧化物歧化酶 SOD/(U·mL−1) 246.55±7.35a 267.37±47.87a 333.78±25.07b 253.23±40.09a
    过氧化氢酶 CAT/(U·mL−1) 12.93±2.87a 17.18±2.57b 23.68±0.91c 20.59±0.97bc
    丙二醛 MDA/(nmol·L−1) 6.40±1.20 5.95±0.54 5.77±0.68 6.31±2.71
    总抗氧化能力 T-AOC/(U·mL−1) 5.18±1.66a 5.75±0.82ab 8.67±2.41b 7.40±1.62ab
    下载: 导出CSV

    表  3   裂褶菌多糖对凡纳滨对虾肠道菌群多样性的影响

    Table  3   Effects of schizophyllan on intestinal microflora diversity of L. vannamei

    指标     
    Index     
    裂褶菌多糖添加量 Addition amounts of schizophyllan
    0% (C)0.5% (S1)1.0% (S2)2.0% (S3)
    操作分类单元 OTUs 236.33±19.50 201.00±25.16 242.67±82.97 240.33±3.21
    Chaol 指数 Chao1 261.33±19.43 227.33±24.83 266.67±78.82 274.33±23.03
    ACE 指数 ACE 261.33±10.50 226.33±22.23 269.67±71.39 262.47±22.50
    香农指数 Shannon 3.37±0.57 3.45±0.18 3.48±0.15 3.42±0.12
    辛普森指数 Simpson 0.70±0.24 0.53±0.13 0.57±0.08 0.65±0.05
    覆盖率指数 Coverage 0.999±0.00 0.999±0.00 0.999±0.00 0.999±0.00
    下载: 导出CSV
  • [1] 文国樑, 李卓佳, 林黑着, 等. 规格与盐度对凡纳滨对虾肌肉营养成分的影响[J]. 南方水产, 2007, 3(3): 31-34.
    [2] 李玉虎, 宋芹芹, 张志怀, 等. 凡纳滨对虾生长发育规律及生长曲线拟合研究[J]. 南方水产科学, 2015, 11(1): 89-95.
    [3] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 22, 24.
    [4]

    TZIANABOS A O. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function[J]. Clin Microbiol Rev, 2000, 13(4): 523-533. doi: 10.1128/CMR.13.4.523

    [5] 张虎成, 齐贺. 发酵原料药生产[M]. 北京: 中国轻工业出版社, 2014: 238-240.
    [6] 尚庆辉, 解玉怀, 张桂国, 等. 植物多糖的免疫调节作用及其机制研究进展[J]. 动物营养学报, 2015, 27(1): 49-58. doi: 10.3969/j.issn.1006-267x.2015.01.008
    [7] 毛绍春, 李竹英, 李聪. 人工裂褶菌多糖结构及含量变化研究[J]. 资源开发与市场, 2007, 23(5): 385-386. doi: 10.3969/j.issn.1005-8141.2007.05.001
    [8] 李翘楚, 张璐, 王红艳, 等. 裂褶菌胞内多糖的提取纯化及生物活性分析[J]. 食品工业科技, 2023, 44(4): 252-260.
    [9] 刘小玲, 徐向群, 黄燕华, 等. 桦褐孔菌多糖对凡纳滨对虾生长和血清免疫相关酶活性的影响[J]. 水产科学, 2014, 33(4): 201-207.
    [10] 昌鸣先, 陈孝煊, 吴志新, 等. 虫草多糖对日本沼虾免疫机能的影响[J]. 华中农业大学学报, 2001, 20(3): 275-278. doi: 10.3321/j.issn:1000-2421.2001.03.020
    [11] 徐申波, 郭振, 陈师勇, 等. 灵芝多糖对凡纳滨对虾生长和免疫功能的影响[J]. 青岛农业大学学报 (自然科学版), 2021, 38(4): 290-294, 304.
    [12] 李红权, 刘存歧, 李志英, 等. 灰树花多糖对日本对虾免疫活性的影响[J]. 水生态学杂志, 2008, 29(6): 128-131.
    [13]

    ZHAO H X, CAO J M, WANG A L, et al. Effect of long-term administration of dietary β-1, 3-glucan on growth, physiological and immune responses in Litopenaeus vannamei (Boone, 1931)[J]. Aquac Int, 2012, 20(1): 145-158. doi: 10.1007/s10499-011-9448-6

    [14] 万安滔, 张林存, 程星宇, 等. 香菇多糖对罗非鱼非特异性免疫力的影响[J]. 江苏农业科学, 2012, 40(4): 225-227.
    [15] 杨娜, 王鸿飞, 董栓泉, 等. 裂褶菌多糖对小鼠免疫活性作用的研究[J]. 现代食品科技, 2014, 30(8): 1-5.
    [16]

    COOK M T, HAYBALL P J, HUTCHINSON W, et al. Administration of a commercial immunostimulant preparation, EcoActiva™ as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrus auratus, Sparidae (Bloeh and Schneider)) in winter[J]. Fish Shellfish Immunol, 2003, 14(4): 333-345. doi: 10.1006/fsim.2002.0441

    [17]

    MISRA C K, DAS B K, MUKHERJEE S C, et al. Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings[J]. Aquaculture, 2006, 255(14): 82-94.

    [18]

    AI Q H, MAI K, ZHANG L, et a1. Effects of dietary β-l, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea[J]. Fish Shellfish Immunol, 2007, 22(4): 394-402. doi: 10.1016/j.fsi.2006.06.011

    [19] 董淑丽, 王占彬, 雷雪芹, 等. 热应激对动物血液生化指标的影响[J]. 家畜生态, 2004, 25(2): 54-56.
    [20]

    COMA J, CARRION D, ZIMMERMAN D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs[J]. J Anim Sci, 1995, 73(2): 472-481. doi: 10.2527/1995.732472x

    [21] 赵军, 林英庭, 孙建凤, 等. 饲粮中不同水平浒苔对蛋鸡蛋黄品质、抗氧化能力和血清生化指标的影响[J]. 动物营养学报, 2011, 23(3): 452-458.
    [22]

    WORTMANN, ROBERT L. Gout and hyperuricemia[J]. Curr Opin Rheumatol, 2002, 14(3): 281-286. doi: 10.1097/00002281-200205000-00015

    [23]

    LI H F, XU C, ZHOU L, et al. Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity[J]. Fish Shellfish Immunol, 2019, 91: 315-324.

    [24] 黄健彬, 迟艳, 周传朋, 等. 褐藻寡糖对卵形鲳鲹幼鱼生长性能, 抗氧化能力和免疫功能的影响[J]. 南方水产科学, 2022, 18(3): 118-128.
    [25] 江晓路, 杜以帅, 王鹏, 等. 褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响[J]. 中国海洋大学学报, 2009, 39(6): 1188-1192.
    [26] 王鹏, 江晓路, 江艳华, 等. 褐藻低聚糖对提高大菱鲆免疫机能的作用[J]. 海洋科学, 2006, 30(8): 6-9.
    [27]

    VALENTE L M P, BATISTA S, RIBEIRO C, et al. Physical processing or supplementation of feeds with phytogenic compounds, alginate oligosaccharide or nucleotides as methods to improve the utilization of Gracilaria gracilis by juvenile European seabass (Dicentrarchus labrax)[J]. Aquaculture, 2021, 530: 1-14.

    [28]

    JAMI M J, KENARI A A, PAKNEJAD H, et al. Effects of dietary b-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877)[J]. Fish Shellfish Immunol, 2019, 91: 202-208.

    [29]

    ZHAO H X, CAO J M, WANG A L, et al. Effect of dietary β-1, 3-glucan on the immune response of Litopenaeus vannamei exposed to nitrite-N[J]. Aquac Nutr, 2012, 18(3): 272-280. doi: 10.1111/j.1365-2095.2011.00893.x

    [30]

    SORAAT A, SASIMANAS U, CHEEWARAT P, et al. Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn, against Aeromonas hydrophila and Flavobacterium columnare[J]. Fish Shellfish Immunol, 2019, 87: 120-128. doi: 10.1016/j.fsi.2018.12.062

    [31]

    JONES S E, LENNON J T. Dormancy contributes to the maintenance of microbial diversity[J]. P Natl Acad Sci USA, 2010, 107(13): 5881-5886. doi: 10.1073/pnas.0912765107

    [32]

    WU J F, XIONG J B, WANG X, et al. Intestinal bacterial community is indicative for the healthy status of Litopenaeus vannamei[J]. Chin J Appl Ecol, 2016, 27(2): 611-621.

    [33] 韩少锋. 罗非鱼腐败过程菌群结构分析及腐败菌的分离、鉴定与调控[D]. 北京: 中国农业科学院, 2010: 7-33.
    [34]

    MUKHOPADHYA I, HANSEN R, ELOMAR E M, et al. IBD: what role do proteobacteria play?[J]. Nat Rev Gastro Hepat, 2012, 9(4): 219-230. doi: 10.1038/nrgastro.2012.14

    [35] 于明超, 张晓华, 郑艳芬, 等. 一种运动鲁杰氏菌菌株及其应用: CN105779366B[P]. 2019-05-31.
    [36]

    KO S R, JEONG Y, CHO S H, et al. Functional role of a novel algicidal compound produced by Pseudoruegeria sp. M32A2M on the harmful algae Alexandrium catenella[J]. Chemosphere, 2022, 300: 1-9.

    [37] 陈晓瑛, 王国霞, 孙育平, 等. 饲料中添加低聚木糖对凡纳滨对虾幼虾消化酶活力、肠道形态及细菌数量的影响[J]. 动物营养学报, 2018, 30(4): 1522-1529.
    [38]

    SU P, HAN Y, JIANG C, et al. Effects of chitosan ligosaccharides on growth performance, digestive enzyme and intestinal bacterial flora of tiger puffer (Takifugu rubripes Temminck et Schlegel, 1850)[J]. J Appl Ichthyol, 2017, 33(3): 458-467. doi: 10.1111/jai.13282

    [39] 潘金露. 饲料中壳寡糖和褐藻酸寡糖对大菱鲆(Scophthalmus maximus)消化及肠道菌群的影响[D]. 大连: 大连海洋大学, 2016: 19-24.
    [40] 殷朝敏, 高虹, 范秀芝, 等. 一种增强白参菌多糖生物活性的复合改性方法及其在调节人体肠道菌群中的应用: CN202210822554.4[P]. 2022-07-13.
    [41] 曹海鹏, 温乐夫, 周桂娴, 等. 南美白对虾白便综合征病原霍乱弧菌的分离与药敏试验[J]. 动物医学进展, 2016, 37(2): 128-132.
    [42]

    PESTOVA M I, CLIFT R E, VICKERS R J, et al. Effect of weaning and dietary galactose supplementation on digesta glycoproteins in pigs[J]. J Sci Food Agric, 2000, 80(13): 1918-1924. doi: 10.1002/1097-0010(200010)80:13<1918::AID-JSFA731>3.0.CO;2-B

  • 期刊类型引用(23)

    1. 冯元泰,史荣君,李俊伟,区又君,齐占会,黄洪辉,贾旭颖. 不同日龄四指马鲅幼鱼肠道结构和菌群组成变化分析. 南方水产科学. 2025(01): 153-163 . 本站查看
    2. 吴子宜,赖文杰,邹振江,宋亚康,黄舜梅,汤胜亮,卢丹琪,张勇. 四指马鲅热休克蛋白70基因(HSP70)表达分析. 海南热带海洋学院学报. 2024(02): 1-10+37 . 百度学术
    3. 段国庆,周华兴,汪焕,凌俊,胡玉婷,潘庭双,杨敏,邬凌云,江河. 60日龄瓦氏黄颡鱼选育群体形态性状对体重的影响分析. 安徽农业大学学报. 2023(01): 78-85 . 百度学术
    4. 江梁正,王珺,区又君,周文礼,温久福,朱长波,李俊伟,陈朝. 2种盐度池塘养殖四指马鲅的肌肉营养组成分析. 中国渔业质量与标准. 2023(02): 11-17 . 百度学术
    5. 田田. 人工养殖斑鳜(Siniperca scherzeri)形态性状与体质量的相关性研究. 水产学杂志. 2023(03): 68-74 . 百度学术
    6. 陈爱华,董义超,吕曼,李泉城,李蒙,石英,刘明. 墨瑞鳕幼鱼形态性状对体质量通径分析及生长曲线拟合. 淡水渔业. 2023(05): 61-67 . 百度学术
    7. 周胜杰,于刚,马振华. 养殖波纹唇鱼雌鱼形态性状对体质量的相关性及通径分析. 海洋科学. 2023(07): 44-52 . 百度学术
    8. 余家旺,王耀嵘,林星桦,沈奕君,李广丽,黄洋,朱春华,田昌绪. 12月龄多鳞鱚形态性状对体质量的影响. 广东海洋大学学报. 2022(01): 137-143 . 百度学术
    9. 王晓龙,李莉,王雪,菅玉霞,高凤祥,郭文,宋宗诚,岳新璐,胡发文. 6月龄斑头鱼形态性状与体质量的相关性和通径分析. 渔业研究. 2022(01): 52-59 . 百度学术
    10. 方伟,陈明强,李有宁,马振华,赵旺,温为庚,邓正华,于刚,王雨. 凸加夫蛤(Gafrarium tumidum)形态性状对体质量性状的相关性及通径分析. 中国渔业质量与标准. 2022(02): 47-53 . 百度学术
    11. 袁岩聪,何航,刘瑛,田庆兵,罗辉,章杰. 不同营养型水库对鳙形态性状和风味物质的影响. 淡水渔业. 2022(03): 91-97 . 百度学术
    12. 李俊伟,罗志平,区又君,李加儿,胡瑞萍,温久福. 不同规格黄鳍鲷的形态性状与体质量的相关性研究. 生态科学. 2022(04): 9-15 . 百度学术
    13. 闫卉果,董智玲,李雨,马婷婷,罗辉,叶华,何文平. 基于通径分析和灰色关联分析岩原鲤形态特征与体质量的关系. 西南大学学报(自然科学版). 2022(05): 74-81 . 百度学术
    14. 虞为,林黑着,马振华,吴洽儿,陈雪晴,杨育凯,黄小林,黄忠,赵旺,李涛,周传朋. 4月龄豹纹鳃棘鲈形态性状对体质量的影响分析. 南方水产科学. 2022(06): 146-151 . 本站查看
    15. 方伟,周胜杰,赵旺,杨蕊,胡静,于刚,马振华. 黄鳍金枪鱼5月龄幼鱼形态性状对体质量的相关性及通径分析. 南方水产科学. 2021(01): 52-58 . 本站查看
    16. 周胜杰,杨蕊,于刚,吴洽儿,马振华. 青干金枪鱼和小头鲔循环水养殖生长研究. 水产科学. 2021(03): 339-346 . 百度学术
    17. 吴新燕,梁宏伟,罗相忠,沙航,邹桂伟. 不同月龄长丰鲢形态性状对体质量的影响. 南方水产科学. 2021(03): 62-69 . 本站查看
    18. 牟恩镟,申屠琰,熊玉凤,朱卫东,王志铮. 池塘专养模式下中华鳖养成品形态性状对体质量和净体质量的影响效应. 浙江海洋大学学报(自然科学版). 2021(01): 22-28+79 . 百度学术
    19. 牛莹月,罗志平,区又君,蓝军南,温久福,李加儿,周慧. 不同盐度对四指马鲅幼鱼存活及鳃组织形态变化的影响. 南方农业学报. 2021(06): 1719-1726 . 百度学术
    20. 樊佳佳,马冬梅,朱华平,黄樟翰,黄剑华,李辉安. F_5代禾花鲤形态性状对体质量的影响. 广东农业科学. 2021(08): 124-130 . 百度学术
    21. 王雅丽,王语同,孙晶,卢运超,陈天楠,王于众,舒锐,吴丛迪,胡鲲. 可控式集装箱养殖模式对乌鳢营养组成、组织形态及肠道菌群的影响. 海洋渔业. 2021(05): 573-585 . 百度学术
    22. 童立豪,谭凡民,罗砚,倪孔平. 红树林人工湿地生态养殖黄鳍鲷形态性状对体质量的影响. 广西科学院学报. 2021(03): 248-255 . 百度学术
    23. 蓝军南,区又君,温久福,李俊伟,牛莹月,李加儿. 四指马鲅性逆转过程初步研究. 南方水产科学. 2020(06): 67-74 . 本站查看

    其他类型引用(7)

推荐阅读
牡蛎酶解产物对糖皮质激素诱导骨质疏松大鼠的改善作用
马文语 et al., 南方水产科学, 2025
不同脱腥方法对薛氏海龙肽粉的脱腥效果比较
陈茂森 et al., 南方水产科学, 2025
Lh原油和0# 柴油乳化液对凡纳滨对虾肝胰腺抗氧化酶活性及相关功能基因表达的影响
沈楚焰 et al., 南方水产科学, 2025
抗副溶血弧菌卵黄抗体制备及其与不同血清型菌株交叉反应研究
陈静妮 et al., 南方水产科学, 2024
湿磨辅助制备淀粉-脂质复合物及其结构和性能研究
DONG Ying et al., JOURNAL OF HENAN UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION), 2023
Bmscs来源的外泌体mir-515-5p可下调tlr4/nlrp3通路抑制ra-fls
蔡东峰 et al., 遵义医科大学学报, 2025
2d mon1.2-rgo stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation
Yu, Huimin et al., ADVANCED FUNCTIONAL MATERIALS, 2023
Alkbh5 activates fak signaling through m6a demethylation in itgb1 mrna and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer
Sun, Rui et al., THERANOSTICS, 2023
Astaxanthin alleviates hepatic lipid metabolic dysregulation induced by microcystin-lr
TOXINS, 1905
Effects of different forms of statins on lipid profile in hyperlipidemic patients
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
Powered by
图(4)  /  表(3)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  99
  • PDF下载量:  76
  • 被引次数: 30
出版历程
  • 收稿日期:  2023-03-12
  • 修回日期:  2023-06-09
  • 录用日期:  2023-06-28
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-10-04

目录

/

返回文章
返回