一株来自水库底泥的溶藻菌G2溶藻特性研究

袁轲婷, 任大钧, 万琼, 柴蓓蓓, 康爱卿, 雷晓辉, 陈彬, 陈翔

袁轲婷, 任大钧, 万琼, 柴蓓蓓, 康爱卿, 雷晓辉, 陈彬, 陈翔. 一株来自水库底泥的溶藻菌G2溶藻特性研究[J]. 南方水产科学, 2022, 18(3): 139-146. DOI: 10.12131/20210187
引用本文: 袁轲婷, 任大钧, 万琼, 柴蓓蓓, 康爱卿, 雷晓辉, 陈彬, 陈翔. 一株来自水库底泥的溶藻菌G2溶藻特性研究[J]. 南方水产科学, 2022, 18(3): 139-146. DOI: 10.12131/20210187
YUAN Keting, REN Dajun, WAN Qiong, CHAI Beibei, KANG Aiqing, LEI Xiaohui, CHEN Bin, Chen Xiang. Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment[J]. South China Fisheries Science, 2022, 18(3): 139-146. DOI: 10.12131/20210187
Citation: YUAN Keting, REN Dajun, WAN Qiong, CHAI Beibei, KANG Aiqing, LEI Xiaohui, CHEN Bin, Chen Xiang. Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment[J]. South China Fisheries Science, 2022, 18(3): 139-146. DOI: 10.12131/20210187

一株来自水库底泥的溶藻菌G2溶藻特性研究

基金项目: 国家自然科学基金青年基金项目 (51809283);河北省自然科学基金创新研究群体 (E2020402074);河北省自然科学基金项目 (E2020402044);中国长江三峡集团有限公司科研项目 (202003136)
详细信息
    作者简介:

    袁轲婷 (1996—),女,硕士研究生,研究方向为水体环境修复。E-mail: yuank835@gmail.com

    通讯作者:

    柴蓓蓓 (1982—),女,副教授,博士,从事水环境修复研究。E-mail: cbb21@163.com

  • 中图分类号: X 524

Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment

  • 摘要: 铜绿微囊藻 (Microcystis aeruginosa) 可引起藻类水华,其大量繁殖会对水体环境造成严重威胁。微生物除藻技术具有良好的应用前景。从陕西省西安市某水库的底泥中分离出一株对铜绿微囊藻具有溶解作用的菌株G2,经16S rDNA序列分析鉴定为纤维弧菌属 (Cellvibrio sp.),GenBank登录号为MW221316,并对G2溶解铜绿微囊藻的可行性进行了研究。结果表明,G2通过分泌胞外物质间接溶藻,稳定期的G2对藻类去除效果最佳;提高G2的投加比例 (>10%) 有助于提升溶藻效果;G2对温度的变化较敏感,5和25 ℃时除藻率分别可达 (59.42±0.88)%和 (63.10±1.42)%,温度高于75 ℃除藻效果不佳;pH和光照对除藻效果影响不显著,G2具有对酸碱耐受能力强 (pH 3~11) 的特点。综上,G2能有效地抑制铜绿微囊藻繁殖,可作为一种潜在的控制有害藻华的生物制剂。
    Abstract: Microcystis aeruginosa can cause algal blooms, which has been a serious threat to the water environment. Microbial algae removal is a technology with good application prospects. In this study, we isolated a new algae-dissolving bacterium G2 from the reservoir substrate of Xi'an of Shaanxi Province, identified as Cellvibrio sp. according to 16S rDNA sequence analysis (GenBank accession No.: MW221316), and investigated the feasibility of G2's solubilizing M. aeruginosa. Results show that G2 solubilized algae by secreting extracellular substances indirectly, and it had the best removal effect on algae during the stabilization period. Increasing G2 dosing ratio (>10%) contributed to the effect of algae dissolution. G2 was sensitive to the change of temperature, and the algae removal rate reached (59.42±0.88)% and (63.10±1.42)% at 5 and 25 ℃, respectively. The removal efficiency was poor at temperatures higher than 75 ℃. The pH and light had no significant influences on the algae removal effect, and G2 had strong tolerance to acid and alkali (pH 3−11). In conclusion, G2 can inhibit the growth of M. aeruginosa efficiently, so it is a promising biocontrol agent to mitigate cyanobacterial blooms.
  • 鲣 (Katsuwonus pelamis) 和黄鳍金枪鱼 (Thunnus albacores) 是金枪鱼围网渔业的主要目标鱼种,广泛分布于全球热带以及亚热带海域,其中中西太平洋渔获量约占各大洋金枪鱼总渔获量的一半以上,是国内外金枪鱼围网船队最重要的作业区域之一[1-3]。鉴于中西太平洋金枪鱼围网渔业的重要性,国内外学者对上述鱼种种群资源变动与环境的关系开展了广泛的研究[4-7],普遍认为海表温度 (Sea surface temperature,SST) 是影响渔业资源时空分布最重要的环境因子:Mullen[8]认为海表温度是决定金枪鱼资源丰度和分布的主要因素;Lehodey等[9]认为金枪鱼围网鲣鱼渔场会随着中西太平洋“暖池”边缘29 ℃等温线沿赤道在东西方向上移动;黄易德[10]和李政纬[11]均以海表温作为单一环境因子对金枪鱼围网渔场变动进行了研究,认为海表温28~29 ℃可作为选择渔场的一项参考指标;胡奎伟等[12]发现鲣鱼资源量集中分布在海表温为28~30 ℃的水域。在中西太平洋,气候变化(如厄尔尼诺和拉尼娜现象)对海洋环境(如海表温、温跃层深度等)影响显著,是渔场位置变动的主要原因。周甦芳等[13]认为厄尔尼诺-南方涛动(El Niño Southern Oscillation,ENSO)对中西太平洋鲣鱼渔场的空间分布有显著影响,发生拉尼娜现象时渔场经度重心随“暖池”西移,厄尔尼诺现象发生时,渔场经度重心随着“暖池”东移;郭爱等[14]以年为单位研究了中西太平洋鲣鱼时空分布与ENSO事件的关系,发现高产区经度重心的变化较ENSO变化滞后一年。

    金枪鱼围网渔业按目标鱼种集群属性分为自由鱼群和随附鱼群两大类,后者主要包括漂流物随附群和鲸豚随附群[15]。先前有研究通过对比两种集群类型对环境偏好特征,发现自由鱼群和随附鱼群的栖息地选择存在明显差异[16]。以往金枪鱼围网渔场变动研究中大多未将两种集群类型的鱼群分开[10-14],一定程度上会造成对渔场变动与环境变化间关系把握不准确。在目前区域性渔业管理组织对人工集鱼装置 (Fishing aggregation devices,FADs) 管理愈加严格的背景下[17-19],捕捞自由鱼群将是未来金枪鱼围网的主要作业方式,了解和掌握金枪鱼自由鱼群渔场变动规律具有重要的现实意义。

    本研究以中西太平洋金枪鱼围网渔业中自由鱼群为研究对象,利用2013—2017年中国中西太平洋金枪鱼围网船队捕捞日志中自由鱼群产量数据,结合海表温度和南方涛动指数(South Oscillation Index,SOI),以月为时间单位,采用1°×1°方格数据,探讨中西太平洋金枪鱼围网自由鱼群渔场重心变动与南方涛动指数间的关系,旨在为我国金枪鱼围网渔业企业合理安排生产提供依据。

    渔业数据选取2013—2017年中国中西太平洋金枪鱼围网渔船队的生产数据(空间范围138.2°E—149.6°W,10.8°N—12.2°S),包括按天统计作业日期、作业位置 (经度、纬度)、渔获种类以及单位网次渔获量 [CPUE (t·网−1)],五年内针对自由鱼群作业情况见表1,渔获物主要由鲣 (78.39%)、黄鳍金枪鱼 (21.25%) 和大眼金枪鱼 (Thunnus obesus,0.36%) 组成。

    表  1  2013—2017年中国中西太平洋金枪鱼围网船队捕捞自由鱼群的作业概况
    Table  1.  Fishing status of tuna free-swimming school caught by Chinese purse seiner in Western and Central Pacific Ocean from 2013 to 2017
    年份
    Year
    作业特征 Fishing characteristics
    经度范围
    Longitude range
    纬度范围
    Latitude range
    投网次数
    Set
    渔获产量
    Catch/t
    2013 141.5°E—171.11°W 7.1°N—7°S 1 601 24 167.4
    2014 147.02°E—170.59°W 6.9°N—9.8°S 1 271 21 450
    2015 138.1°E—154.3°W 10.8°N—10.6°S 1 611 32 812
    2016 141.43°E—149.58°W 7.9°N—8.7°S 1 600 31 873
    2017 141.1°E—175.94°W 5.75°N—12.2°S 1 594 26 243.2
    总计 Total 7 677 136 545.6
    下载: 导出CSV 
    | 显示表格

    SST通过遥感卫星手段获取,数据来源于亚太数据研究中心 (Asia-Pacific Data-Research Center),时间分辨率为月,空间分辨率为1°×1°。

    SOI来自美国气候分析中心(American Climate Analysis Center),SOI代表了ENSO现象的大气效应,有效地反映了太平洋东西两侧气压增强和减弱的演变情况。当SOI为正值时表明东南太平洋气压高于西太平洋和印度洋,代表拉尼娜现象的发生;反之,负值表明东南太平洋气压低于西太平洋和印度洋,代表厄尔尼诺现象的发生[20]。本研究采用数据时间范围为2013—2017年,时间分辨率为月。

    对渔业数据进行预处理,首先对数据中偏离正常作业经度和纬度范围(12°N—12°S)的异常作业数据进行筛选并剔除。

    本研究采用以月为时间单位,渔场重心计算公式[21]如下:

    $$ {\rm GY}{_{m,y}} = \dfrac{{\displaystyle\sum \limits_{n = 1}^N {l_{ n}}{C_{n,m,y}}}}{{\displaystyle \sum \limits_{n = 1}^N {C_{n,m,y}}}} $$ (1)
    $$ {\rm GX}{_{m,y}} = \dfrac{{\displaystyle \sum \limits_{n = 1}^N {l_{ a}}{C_{n,m,y}}}}{{\displaystyle\sum \limits_{n = 1}^N {C_{n,m,y}}}} $$ (2)

    其中GY为渔场重心经度,GX为渔场重心纬度,ln为作业位置经度,la为作业位置纬度,m为作业月份,y为作业年份,n为作业位置,$ {{C_{n,m,y}}}$ym月在位置n的单位网次渔获量。

    采用相关性分析判断SOI与渔场重心经度之间的相关关系,其中相关系数大于零时表示正相关,反之表示负相关。

    2013—2017年我国船队在中西太平洋海域捕捞自由鱼群渔场重心变动情况见图1,渔场重心纬向的分布范围为155°E—178°W,其中160°E—175°W为主要分布海域,在沿纬度方向上重心位置变动范围较窄,仅介于4°N—5°S。从图1可见,渔场重心向西最远至155°E附近 (2013年4月),向东最远至178°W附近 (2015年10月)。其中2013年在155°E—171°E;2014年在158°E—174°E;2015年在160°E—179°W;2016年在156°E—179°E;2017年在156°E—177°E。2013—2015年渔场重心有逐年向东转移的趋势 (2013年渔场重心经度均值为161.96°E,2014年渔场重心经度均值为166.84°E,2015年渔场重心经度均值为171.15°E),2013年和2014年,相邻两个月间渔场重心在纬向上位移较小 (相邻两个月平均相距4°),而2015和2016年渔场重心月间位移较大(相邻两个月平均相距5.2°),未发现渔场重心存在明显的月间变化规律。

    图  1  2013—2017年中西太平洋金枪鱼自由鱼群渔场重心月间变化轨迹
    Figure  1.  Monthly variation of of gravity center of tuna free-swimming school in Western and Central Pacific Ocean from 2013 to 2017

    2013—2017年我国金枪鱼围网船队在中西太平洋海域捕捞自由鱼群的渔场重心、渔获量时空分布与SOI的关系 (图2),其中对SOI和月间渔场重心的经度之间进行相关性分析,结果表明两者之间呈显著负相关 (相关系数为−0.27,P<0.05),当SOI为正值且数值越大时,自由鱼群渔场重心经度越小,即重心向西偏移;反之,当SOI为负值且数值越小时,渔场重心经度越大,重心沿赤道向东偏移。SOI在0附近波动时,自由鱼群渔场重心介于150°E—170°E往复摆动。此外,发现2015年下半年和2016年上半年,SOI为负值,渔获量高于其他年份,渔场重心向东偏移明显,最远至180°W附近,五年间,船队作业海域最东位于145°W附近,最西至140°E,且145°W—140°E附近海域每年均有生产作业。

    图  2  2013—2017年中西太平洋金枪鱼自由鱼群渔获量时空分布以及南方涛动指数与渔场重心变化
    Figure  2.  Spatio-temporal distribution of catch, Southern Oscillation Index and fishing ground gravity center shift of tuna free-swimming school in Western and Central Pacific Ocean from 2013 to 2017

    此外,对南方涛动指数变化和渔场重心经度变动进行交叉相关分析,结果显示,南方涛动指数变化一个月后,渔场重心经度产生显著变动 (图3),即渔场重心经度变动相对南方涛动指数变动滞后时间为一个月。

    图  3  南方涛动指数与渔场重心经度交叉相关分析
    Figure  3.  Cross-correlation analysis between Southern Oscillation Index and longitude of fishing ground gravity

    2013—2017年,SOI最大 (对应2013年6月拉尼娜现象)、最小 (对应2015年8月厄尔尼诺现象) 以及在0附近波动 (对应2017年1月正常气候状况) 三个特殊月份自由鱼群渔场位置、作业产量、以及SST 的空间分布见图4。SOI在0附近波动时 (图4-a),渔获量较高海域的SST略高于30 ℃,“暖池”边缘和“冷舌”边缘间存在密集等温线;SOI最大时“暖池”较正常年份向西偏移 (图4-b),自由鱼群高产区域明显沿“暖池”边缘向西偏移,渔获量较高海域的SST介于29~30 ℃;SOI最小时,“暖池”沿赤道方向向东偏移 (图4-c),捕捞自由鱼群渔获量较高作业区域也随之向东偏移,渔获量较高海域的SST介于29~30 ℃,且基本上集中在29.5 ℃等温线上或附近海域。

    图  4  不同南方涛动指数下自由鱼群捕捞位置及产量分布
    a. 南方涛动指数在0附近时 (2017年1月);b. 南方涛动指数为最大值时 (2013年6月);c.南方涛动指数最小值时 (2015年8月)
    Figure  4.  Fishing position and yield distribution of free-swimming school with different Southern Oscillation Index
    a. SOI was about 0 (January 2017); b. SOI was maximum (June 2013); c. SOI was maximum (August 2015)

    本研究根据2013—2017年中国中西太平洋金枪鱼围网船队捕捞自由鱼群的生产数据分析了五年间渔场重心变动情况,结果显示自由鱼群渔场重心集中分布在160°E—175°E(图1),唐峰华等[21]采用多个海洋环境因子分析认为中西太平洋金枪鱼围网中心渔场位于150°E—165°E。本研究结果中渔场重心分布整体偏东5个经度。此外,汪金涛和陈新军[22]发现在经度方向上每年12月至翌年4月中西太平洋鲣鱼渔场重心相对集中,类似现象在本研究中并不明显。另外,陈世泳[23]研究发现,每年上半年,中西太平洋鲣鱼渔场重心一般分布在当年作业海域的西侧,本研究中渔场重心变化情况与其研究结果存在明显差别。

    造成本研究结果和先前研究结果存在差别的原因可能是:1)唐峰华等[21]的研究仅采用单一公司的捕捞数据,其作业范围会小于整个中国船队的作业范围;而汪金涛和陈新军[22]的研究使用整个中西太平洋围网船队的数据,陈世泳[23]的研究使用中国台湾省围网船队的作业数据,其作业范围远大于大陆船队,因此本研究使用的生产数据能够最为准确的反映我国船队捕捞自由鱼群渔场重心的分布范围;2)各研究年份存在差异,先前有关研究的数据源于1990—2012年,本研究的数据年份为2013—2017年,不同年份可能处于不同的ENSO事件周期或某一个阶段,导致鱼群分布具有显著差异。另外,自1990年以来,中西太平洋海域围网船队技术不断变革(如船舶吨位的显著增加、直升机的普遍应用、喷水集鱼小艇的使用等),技术的发展也将导致围网作业海域发生潜在变化;3)本研究对围网渔获物按照集群类型进行了细致划分,Wang等[24]发现自由状态下聚集的金枪鱼鱼群比聚集在漂流随附物下的鱼群对海洋环境的变化要更敏感,在相同厄尔尼诺时期捕捞这两种鱼群的渔场重心可能会相差上千公里,另外Druon等[16]通过研究自由鱼群和随附鱼群对栖息地选择的差异,发现自由鱼群所处栖息地环境质量比随附鱼群更好。因此,研究中不区分集群类型是不能准确地呈现渔场重心变动与海洋环境之间的关系。采用整个中国金枪鱼围网船队捕捞自由鱼群的资料来研究金枪鱼自由鱼群渔场变动与海洋环境变化的关系是本研究的一个重要特点。

    本研究发现南方涛动指数变动与中西太平洋自由鱼群渔场重心位置变化存在着密切的联系 (图2)。以正常年份即SOI在0附近波动时作为参照,当SOI小于0时,自由鱼群渔场重心存在较明显向东移动的趋势;当SOI大于0时,渔场重心明显向西偏移。已有研究表明,厄尔尼诺现象发生时渔场通常向东偏移;反之,拉尼娜现象产生时,渔场通常向西偏移[4, 9, 13]。本研究中SOI为负值时的渔场变动情况和厄尔尼诺现象产生时渔场变动情况相似;SOI为正值时的渔场变动情况和拉尼娜现象产生时的渔场重心位置变动情况相似。这是因为在通常情况下,中西太平洋“冷舌”海域初级生产力较高,西太平洋主要存在大气对流区,初级生产力普遍较低。赤道辐散造成浮游群落在经向和纬向产生空间变动,发生厄尔尼诺现象时,“暖池”东移,大量的饵料生物聚集在“冷舌”和“暖池”交汇处,该区域也被称之为“暖池-冷舌海洋生态系统”[25-27],为金枪鱼的生长和聚集提供了适宜的环境,是鲣鱼和黄鳍金枪鱼良好的索饵场[28],发生拉尼娜现象时,“暖池”西移,鱼群聚集位置也随之向西偏移。可见,渔场变动和气候变化两者间的联系密切[29]

    鱼群的聚集和生长受SST的影响显著[9-12],本研究发现捕捞金枪鱼自由鱼群渔获产量与海SST变化联系密切,郭爱等[14]研究发现中西太平洋鲣鱼围网产量较高区域主要分布在SST 28~30 ℃的水域,尤其以29~30 ℃为主;唐浩等[30]发现该海域鲣鱼适宜的SST为28~30 ℃。本研究选取在2013—2017年五年间,SOI最大、最小和SOI在0附近波动时3个反应气候变化特定月份的单位网次渔获量,结合海表温度,分析各月单位网次渔获量较高作业海域和SST之间的关系,得出SOI在0附近时,自由鱼群单位网次渔获量较高作业海域SST高于30 ℃ (图4),SOI最大和最小时,单位网次渔获量较高作业海域海表温度介于29~30 ℃,且一般集中在海表温在29.5 ℃等温线附近,研究结果与郭爱等[14]和唐浩等[30]的结果存在一定差别,造成该结果的主要原因可能是由于金枪鱼自由鱼群对SST变化表现更敏感[21],自由状态下聚集的鱼群所处环境温度略高于鱼群随附漂流物时所处环境温度,因此导致本研究结果略高于以往研究结果[14, 29]

    此外,本研究还发现在2015年下半年和2016年上半年中国围网船队单位网次渔获量明显高于剩余年份 (图2),有研究表明,在厄尔尼诺现象发生后不久,大眼金枪鱼和黄鳍金枪鱼的捕捞条件优于正常年份[31],由于本研究所采用数据的时间序列有限,出现持续较长时间SOI为负值是否对渔获产量有影响还需在今后研究中进一步验证,以便提高对渔场变动预测的准确性。

  • 图  1   菌株G2的菌落

    Figure  1.   Colony of Strain G2

    图  2   基于16S rDNA基因序列构建的菌株G2系统发育树

    Figure  2.   Constructed phylogenetic tree of Strain G2 based on 16S rDNA gene sequence

    图  3   溶藻菌G2生长曲线

    Figure  3.   Growth curve of Strain G2

    图  4   菌株G2的溶藻方式

    Figure  4.   Algicidal mode of Strain G2

    图  5   不同生长期下菌株G2的溶藻效果

    Figure  5.   Algicidal effect of Strain G2 at different growth stages

    图  6   不同投加比例下菌株G2的溶藻效果

    Figure  6.   Algicidal effect of Strain G2 with different proportions

    图  7   不同pH下菌株G2的溶藻效果

    Figure  7.   Algicidal effect of Strain G2 with different pH

    图  8   不同温度下菌株G2的溶藻效果

    Figure  8.   Algicidal effect of Strain G2 at different temperatures

    图  9   不同光照下菌株G2的溶藻效果

    Figure  9.   Algicidal effect of Strain G2 under different light conditions

  • [1]

    XU D L, CAI Y, JIANG H, et al. Variations of food web structure and energy availability of shallow lake with long-term eutrophication: a case study from Lake Taihu, China[J]. Clean-Soil Air Water, 2016, 44(10): 1306-1314. doi: 10.1002/clen.201300837

    [2] 朱广伟, 许海, 朱梦圆, 等. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 2019, 31(6): 1510-1524. doi: 10.18307/2019.0622
    [3] 杨正健, 俞焰, 陈钊, 等. 三峡水库支流库湾水体富营养化及水华机理研究进展[J]. 武汉大学学报 (工学版), 2017, 50(4): 507-516.
    [4]

    MOHAMED M N, WELLEN C, PARSONS C T, et al. Understanding and managing the re-eutrophication of Lake Erie: knowledge gaps and research priorities[J]. Freshw Sci, 2019, 38(4): 675-691. doi: 10.1086/705915

    [5] 中华人民共和国生态环境部. 2020中国环境生态环境质量简况[OL]. (2021-03-02). http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202103/t20210302_823100.html.
    [6]

    KHAIRY H, EL-SHEEKH M. Toxicological studies on microcystin produced by Microcystis aeruginosa: assessment and management[J]. Egypt J Bot, 2019, 59(3): 551-566.

    [7]

    DENG J M, QIN B Q, SARVALA J K, et al. Phytoplankton assemblages respond differently to climate warming and eutrophication: a case study from Pyhäjärvi and Taihu[J]. J Gt Lakes Res, 2016, 42(2): 386-396. doi: 10.1016/j.jglr.2015.12.008

    [8]

    STEFFEN M M, DAVIS T W, MCKAY R M L, et al. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH[J]. Environ Sci Technol, 2017, 51(12): 6745-6755. doi: 10.1021/acs.est.7b00856

    [9]

    FAN G D, LIU D M, ZHU G C, et al. Influence factors in kinetics during removal of harmful algae by ultrasonic irradiation process[J]. Desalin Water Treat, 2014, 52(37/38/39): 7317-7322.

    [10]

    LIN J L, HUA L C, HUNG S K, et al. Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation-flotation: effect of algogenic organic matter release on algal removal and trihalomethane formation[J]. J Environ Sci, 2018, 63(1): 147-155.

    [11]

    SAMARASINGHE N, FERNANDO S, LACEY R, et al. Algal cell rupture using high pressure homogenization as a prelude to oil extraction[J]. Renew Energ, 2012, 48: 300-308. doi: 10.1016/j.renene.2012.04.039

    [12] 景二丹, 许小燕, 李丛宇, 等. 阳澄湖水源水中藻类的去除研究[J]. 中国给水排水, 2019, 35(13): 43-46.
    [13]

    MARŠÁLEK B, ZEZULKA Š, MARŠÁLKOVÁ E, et al. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria[J]. Chem Eng J, 2020, 382: 122383. doi: 10.1016/j.cej.2019.122383

    [14]

    WANG M, CHEN S B, ZHOU W G, et al. Algal cell lysis by bacteria: a review and comparison to conventional methods[J]. Algal Res, 2020, 46: 101794. doi: 10.1016/j.algal.2020.101794

    [15]

    LIU J Y, YANG C Y, CHI Y X, et al. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake[J]. J Basic Microbiol, 2019, 59(11): 1112-1124. doi: 10.1002/jobm.201900112

    [16]

    ZHU B W, HUANG L S, TAN H D, et al. Characterization of a new endo-type polyM-specific alginate lyase from Pseudomonas sp.[J]. Biotechnol Lett, 2015, 37(2): 409-415. doi: 10.1007/s10529-014-1685-0

    [17]

    SCHWENK D, NOHYNEK L, RISCHER H. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures[J]. MicrobiologyOpen, 2014, 3(3): 356-368. doi: 10.1002/mbo3.175

    [18]

    CHEN Z R, ZHENG W, YANG L X, et al. Lytic and chemotactic features of the plaque-forming bacterium KD531 on Phaeodactylum tricornutum[J]. Front Microbiol, 2017, 8: 2581. doi: 10.3389/fmicb.2017.02581

    [19]

    BARBEYRON T, ZONTA E, le PANSE S L, et al. Alteromonas fortis sp. nov., a non-flagellated bacterium specialized in the degradation of iota-carrageenan, and emended description of the genus Alteromonas[J]. Int J Syst Evol Microbiol, 2019, 69(8): 2514-2521. doi: 10.1099/ijsem.0.003533

    [20]

    SUN H Y, ZHANG Y, CHEN H R, et al. Isolation and characterization of the marine algicidal bacterium Pseudoalteromonas S1 against the harmful alga Akashiwo sanguinea[J]. Mar Biol, 2016, 163(3): 1-8.

    [21]

    SUN P F, ZHAO J Y, TANG J, et al. Algicidal activity recovery by a Li-doped up-conversion material converting visible light into UV[J]. Sci Total Environ, 2020, 720(1): 137596. doi: 10.1016/j.scitotenv.2020.137596

    [22]

    CHI W J, SEO J W, HONG S K. Characterization of two thermostable β-agarases from a newly isolated marine agarolytic bacterium, Vibrio sp. S1[J]. Biotechnol Bioprocess Eng, 2019, 24(5): 799-809. doi: 10.1007/s12257-019-0180-9

    [23]

    YU S, YUN E J, DONG H K, et al. Molecular and enzymatic verification of the dual agarolytic pathways in a marine bacterium, Vibrio sp. strain EJY3: molecular and enzymatic verification[J]. Appl Environ Microbiol, 2020, 86(6): e02724-19. doi: 10.1128/AEM.02724-19

    [24]

    LIN Z H, CHEN B B, ZHAO L. Fluorescence-based bioassays with dose-response curve and relative potency in measuring algicidal virulence of Bacillus sp. B1 exudates against Heterosigma akashiwo[J]. Sci Total Environ, 2020, 724: 137691. doi: 10.1016/j.scitotenv.2020.137691

    [25] 国家环境保护总局. 水和废水监测分析方法第4版[M]. 北京: 中国环境科学出版社, 2002: 670-671.
    [26]

    IMAI I, ITO H, ODA T, et al. Isolation and characterization of algicidal bacteria and its effect on a musty odor-producing cyanobacterium Dolichospermum crassum in a reservoir[J]. Water Supply, 2017, 17(3): 792-798. doi: 10.2166/ws.2016.179

    [27]

    ZHANG S Y, FAN C, XIA Y S, et al. Characterization of a novel bacteriophage specific to Exiguobacterium indicum isolated from a plateau eutrophic lake[J]. J Basic Microbiol, 2019, 59(2): 206-214. doi: 10.1002/jobm.201800184

    [28] 王琪, SIMON P, 刘锦钰, 等. 滇池中溶藻细菌的分离鉴定及其溶藻效应[J]. 微生物学通报, 2018, 45(12): 2614-2623.
    [29]

    LI Y, LEI X Q, ZHU H, et al. Chitinase producing bacteria with direct algicidal activity on marine diatoms[J]. Sci Rep, 2016, 6(1): 21984. doi: 10.1038/srep21984

    [30]

    NISHU S D, KANG Y, HAN I, et al. Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae[J]. PLOS ONE, 2019, 14(3): e0213370. doi: 10.1371/journal.pone.0213370

    [31]

    YOU D S, LEE Y W, CHOI D, et al. Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa [J]. Kor J Chem Eng, 34(1): 139-149.

    [32] 石新国, 李悦, 郑文煌, 等. 一株中肋骨条藻特异溶藻菌的分离鉴定及溶藻特性[J]. 微生物学通报, 2020, 47(11): 3527-3538.
    [33]

    WANG Y F, COYNE K J. Immobilization of algicidal bacterium Shewanella sp. IRI-160 and its application to control harmful dinoflagellates[J]. Harmful Algae, 2020, 94: 101798. doi: 10.1016/j.hal.2020.101798

    [34]

    GUAN C W, GUO X Y, CAI G J, et al. Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species[J]. Biol Control, 2014, 76: 79-86. doi: 10.1016/j.biocontrol.2014.05.007

    [35]

    KONG Y, WANG Q, CHEN Y J, et al. Anticyanobacterial process and action mechanism of Streptomyces sp. HJC-D1 on Microcystis aeruginosa[J]. Environ Prog Sustain Energy, 2020, 39(4): 13392. doi: 10.1002/ep.13392

    [36]

    AL-HAKIMI A A, ALMINDEREJ F, NOMAN E. Optimizing of Microcystis aeruginosa inactivation in freshwater using algicidal Bacillus subtilis by central composite design[J]. Desalin Water Treat, 2020, 181: 228-38. doi: 10.5004/dwt.2020.25117

    [37]

    ZHANG B Z, CAI G J, WANG H T, et al. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa[J]. PLOS ONE, 2014, 9(3): e92907. doi: 10.1371/journal.pone.0092907

    [38]

    YU Y, ZENG Y, LI J, et al. An algicidal streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously[J]. Sci Total Environ, 2019, 650: 34-43. doi: 10.1016/j.scitotenv.2018.08.433

    [39]

    ZHANG C C, MASSEY I Y, LIU Y, et al. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa[J]. J Toxicol Env Health A, 2019, 82(15): 845-853. doi: 10.1080/15287394.2019.1660466

    [40] 杨冰洁, 向文洲, 金雪洁, 等. 一株溶藻菌CBA02的分离鉴定及溶藻特性研究[J]. 生物技术通报, 2020, 36(11): 60-67.
  • 期刊类型引用(9)

    1. 丁鹏,邹晓荣,丁淑仪,白思琦. 基于CNN-BiLSTM模型的黄鳍金枪鱼渔获量与气候因子关系研究. 南方水产科学. 2024(02): 19-26 . 本站查看
    2. 王月,杨晓明,朱江峰. 中西太平洋自由群鲣资源丰度序列的振荡模态分析. 海洋渔业. 2024(03): 266-274 . 百度学术
    3. 蒋明峰,陈新军,吕泽华,汪金涛,雷林,许子安,林泓羽,贺海平,贾海滨. 中西太平洋鲣围网渔业入渔指标体系构建与应用. 水产学报. 2024(10): 62-71 . 百度学术
    4. 王啸,刘文俊,张健. 基于ARIMA的海洋尼诺指数对中西太平洋黄鳍金枪鱼年际CPUE的影响. 南方水产科学. 2023(04): 10-20 . 本站查看
    5. 蒋明峰,陈新军. 中东太平洋赤道公海海域鱿钓渔业自主休渔效果初步评价. 上海海洋大学学报. 2022(03): 670-676 . 百度学术
    6. 周晓磊,万辛如,李建云,闫东,邵奎东,张忠兵,张知彬,杜国义,鞠成,徐成. 内蒙古高原长爪沙鼠疫源地鼠疫流行规律及影响因素分析. 中华地方病学杂志. 2022(09): 695-702 . 百度学术
    7. 刘洋帆,李绪鹏,冯阳,王迪,陈胜军,杨贤庆,吴燕燕,邓建朝. 超高效液相色谱-串联质谱法测定鲣鱼中的生物胺. 食品与发酵工业. 2022(20): 225-230 . 百度学术
    8. 白思琦,邹晓荣,张鹏,丁鹏. 环境因子对东南太平洋智利竹?鱼渔场时空分布异质性影响. 南方水产科学. 2021(01): 17-24 . 本站查看
    9. 方伟,周胜杰,赵旺,杨蕊,胡静,于刚,马振华. 黄鳍金枪鱼5月龄幼鱼形态性状对体质量的相关性及通径分析. 南方水产科学. 2021(01): 52-58 . 本站查看

    其他类型引用(2)

图(9)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-08-01
  • 录用日期:  2021-09-13
  • 网络出版日期:  2022-03-28
  • 刊出日期:  2022-06-04

目录

/

返回文章
返回