Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene
-
摘要: 以莱州、胶南、舟山、厦门、汕头和北海6个群体119尾少鳞鱚 (Sillago japonica)为研究对象,采用PCR扩增测序获得长度为450 bp的线粒体DNA NADH脱氢酶亚基2 (ND2)基因片段,共检测到77个变异位点,其中简约信息位点30个,单变异位点28个,无碱基缺失。119条序列定义了61个单倍型,平均单倍型多样性(Hd)和核苷酸多样性(π)分别为0.945 3±0.015 5和0.009 718±0.005 445。6个群体间的平均遗传距离为0.008 3,遗传分化指数FST均小于0.05,各群体间无显著遗传分化。AMOVA分析得出少鳞鱚的遗传变异主要来自于种群内个体间(99.96%)。中性检验的Tajima's D和Fu's Fs统计值均为负值且显著偏离中性,核苷酸不配对分布图呈现明显的单峰分布,表明少鳞鱚历史上经历了群体扩张事件,估算扩张时间大约在 (0.12~0.29)百万年前的第四纪更新世晚期。Abstract: A total of 119 individuals of Sillago japonica were collected from six sampling sites (Laizhou, Jiaonan, Zhoushan, Xiamen, Shantou and Beihai). The length of 450 bp NADH dehydrogenase subunit 2 (ND2) gene fragment was amplified and sequenced. No base insertion or deletion mutations occurred and 77 mutation sites were detected, including 30 parsimony informative sites and 28 singleton polymorphic sites. Sixty-one haplotypes were defined in 119 sequences. The average haplotype diversity (Hd) and nucleotide diversity (π) were 0.945 3±0.015 5 and 0.009 718±0.005 445, respectively. The average genetic distance among the six populations was 0.008 3, and the genetic differentiation index FST value was less than 0.05, indicating no significant genetic differentiation among the populations. Analysis of molecular variance (AMOVA) shows that genetic variation of S. japonica mainly resided among individuals within populations (99.96%). The neutral tests (Tajima's D and Fu's Fs) were both negative and deviated from the neutral significantly. Besides, the nucleotide mismatches distribution showed a unimodal distribution, indicating that S. japonica had experienced population expansion in history. The estimated expansion time was about 0.12−0.29 million years ago in late Pleistocene.
-
氨氮是水产养殖中蛋白质的分解产物,主要由剩余食物和鱼粪分解产生[1],其主要在水中以氨 (NH3) 和离子态铵 (NH4 +) 的形式存在。NH3是一种脂溶性氨水,容易穿透细胞膜而对鱼类造成毒害[2]。大多数鱼类对环境中的氨氮浓度很敏感,是导致鱼病发生的主要环境因子之一。氨氮胁迫会损伤鱼类的鳃组织,渗透进入血液淋巴组织,机体抗氧化酶系统受损,鳃、消化器官等组织结构发生病变从而影响机体呼吸及消化功能,甚至引起发病死亡[3-4]。因此,研究氨氮胁迫对水产动物生理指标及组织结构的影响,可为胁迫因子对机体的影响监测提供基础指标并明确鱼类对氨氮的耐受性,对促进水产养殖的可持续发展具有重要意义。目前,氨氮对水生生物影响的研究已有很多,如黑鲷 (Acanthopagrus schlegeli)[5]、牙鲆 (Paralichthys olivaceus)[6]、黄颡鱼 (Pelteobagrus fulvidraco)[7]、克氏原螯虾 (Procambarus clarkia)[8]、奥尼罗非鱼 (Oreochromis niloticus×O. areus)[9]、方斑东风螺 (Babylonia areolata)[10]等。黄厚见等[11]发现,随着氨氮浓度的升高,梭鱼 (Liza haematocheila) 的胃蛋白酶活力显著下降。不同氨氮浓度胁迫下,福瑞鲤 (Cyprinus carpio)[12] 与刺参 (Stichopus japonicus) [13]的Na+/K+-ATP酶与呼吸代谢酶活力随氨氮浓度的升高而降低。研究表明高于0.60 mg·L−1的氨氮会使吉富罗非鱼幼鱼的组织结构受损,显著影响罗非鱼的消化酶水平,从而使其生长率明显低于对照组[14]。团头鲂 (Megalobrama amblycephala) 幼鱼在氨氮胁迫6 h后,鳃丝血管扩张,上皮组织增生,肝细胞肿胀,胁迫48 h,鳃小片卷曲,上皮细胞部分脱落;肝细胞部分溶解、血窦扩张,形成点状病灶,组织结构受到严重破坏[15]。不同的水生生物对氨氮的耐受能力不同,不同规格的同一品种鱼对氨氮的耐受能力也存在差异[16]。
翘嘴鳜 (Siniperca chuatsi) 为典型肉食性鱼类,喜食活饵。目前,翘嘴鳜的养殖由于过度追求数量,养殖密度高,养殖过程中投喂大量的饵料鱼,饵料残渣和鱼的代谢产物在水中快速积累易导致水体中的氨氮浓度快速升高[17-18]。生产实践表明翘嘴鳜对氨氮非常敏感,氨氮胁迫下其生长特性、消化功能均可能发生变化,进而影响了养殖效益。目前国内外针对翘嘴鳜幼鱼的研究主要集中在生长选育、食性改良等方面,而关于氨氮胁迫的研究却很少。本实验以翘嘴鳜幼鱼鳃、消化组织为研究对象,分析半致死浓度(LC50)氨氮胁迫下,不同胁迫时间,翘嘴鳜幼鱼鳃丝呼吸代谢酶 [ 乳酸脱氢酶 (LDH)、己糖激酶(HK)]与Na+/K+-ATP酶以及胃囊、肠道消化酶[ 淀粉酶 (AMS)、胃蛋白酶、脂肪酶 (LPS)]活力的变化,探究急性氨氮胁迫对翘嘴鳜幼鱼鳃与消化道生理功能的影响机制,进而实时监测养殖水体的氨氮浓度变化,预防病害,以期为翘嘴鳜的生态健康养殖提供依据。
1. 材料与方法
1.1 实验用鱼
本研究所用翘嘴鳜幼鱼均选自南京农业大学无锡渔业学院南泉养殖基地,暂养于室内控温循环水养殖系统 (400 L·桶−1)。选取体表无损伤、规格整齐的翘嘴鳜幼鱼300尾。实验开始前,翘嘴鳜幼鱼于室内控温循环水养殖系统暂养14 d。暂养期间保持自然光照周期,暂养水体实验条件为溶解氧 (DO)质量浓度≥6 mg·L−1、氨氮质量浓度≤0.05 mg·L−1、水温 (22.0±0.5) ℃。暂养期间饵料鱼每2 d投放1次,数量为翘嘴鳜的2倍。
1.2 实验方法
1.2.1 氨氮胁迫96 h LC50测试
室内循环水系统保持水温 (22.1±0.3) ℃,暂养14 d后选取规格整齐的翘嘴鳜幼鱼120尾[ 体质量 (13.55±0.69) g,体长 (9.26±0.35) cm]进行LC50测试。设定0、30、60和90 mg·L−1氯化铵 (NH4Cl) (试剂号75-09-2,国药集团化学试剂有限公司) 4个浓度梯度。每组浓度设置3个平行,每个平行放置10尾鱼。在96 h观测期中每隔8 h使用W-1型多参数水质分析仪 (杭州陆恒生物科技有限公司) 检测各水体氨氮浓度,将其调整为实验设计的氨氮浓度,每24 h换水1/4。观测翘嘴鳜幼鱼的活性变化,计数并捞出死亡个体 (鱼体侧翻且鳃盖停止扇动视为死亡)。
1.2.2 氨氮胁迫实验
暂养结束后,依据氨氮胁迫96 h LC50,设置对照组 (0 mg·L−1) 与实验组 (48.65 mg·L−1),实验组与对照组设置3个重复,选取体质量相近、活性良好的翘嘴鳜幼鱼180尾 [体质量 (13.31±0.49) g、体长 (9.73±0.46) cm] 随机平均放置于6个养殖桶中 (400 L),每桶30尾。对照组为完全曝气的自来水 (氨氮实测值为0.05 mg·L−1)。实验期间水温 (22.0±0.5) ℃, pH维持在7.70±0.10,DO质量浓度维持在 (6.13±0.12) mg·L−1, 氨氮胁迫时长为96 h,实验期间保持水体静止,停止进食,持续充氧,每隔8 h使用W-1型多参数水质分析仪 (杭州陆恒生物科技有限公司) 检测各水体氨氮浓度,将其调整为实验设计的氨氮浓度,每24 h换水1/4。
1.3 样品采集
在氨氮胁迫第0、第6、第12、第24、第48和第96小时,每桶分别随机选择3尾翘嘴鳜并用50 mg·L−1 MS-222轻度麻醉,采集翘嘴鳜幼鱼活体的第二鳃弓处鳃丝、胃囊、肠道,−80 ℃冻存用于后续酶活力测定。
1.4 指标测定
Na+/K+-ATP酶、LDH、HK、胃蛋白酶、LPS、AMS检测试剂盒购自南京建成生物研究所。取0.1 g样品加入9倍体积的生理盐水研磨后3 000 r·min−1 4 ℃离心10 min,取上清液−80 ℃保存备用。各种酶活力按试剂盒中的说明书进行操作,均采用比色法进行测定。
1.4.1 Na+/K+-ATP酶活力定义
采用定磷法测定。取同批10%组织匀浆加0.68%的生理盐水稀释至1%,用考马斯亮兰法测定组织中的蛋白含量。以每小时每毫克组织蛋白中ATP酶分解ATP产生1 μmol无机磷的量为1个ATP酶活力单位。
1.4.2 LDH活力单位定义
每毫升上清37 ℃与基质作用15 min,在反应体系中产生1 μmol丙酮酸为1单位。通过测定样品孔与标准孔的吸光值来计算酶活力。
1.4.3 HK活力定义
在37 ℃、pH 7.6的条件下,每克组织蛋白在本反应体系中每分钟生成1 mmol·L−1的NADP定义为1个酶活力单位。在340 nm波长处,测定吸光度的增加值来计算酶活力。
1.4.4 胃蛋白酶定义
每毫克组织蛋白37 ℃下, 每分钟分解蛋白生成1 μg氨基酸相当于1个酶活力单位,通过测定660 nm处的吸光值进行计算。
1.4.5 LPS活力定义
在37 ℃条件下,每升上清与底物反应1 min后,每消耗1 μmol底物为一个酶活力单位。通过测定420 nm处吸光度值的差值来计算酶活力。
1.4.6 AMS活力定义
组织中每毫克蛋白在37 ℃与底物作用30 min,水解10 mg淀粉定义为1个淀粉酶活力单位,根据与碘生成的蓝色复合物来计算AMS活力。
1.5 统计分析
翘嘴鳜幼鱼96 h LC50分析采用直线内插法。实验结果分析使用SPSS 20.0 软件。酶活力检测结果以3个平行组数据 “平均值±标准差 (
$\overline X \pm {\rm{SD}} $ )”表示,实验相同采样时间实验组与对照组的比较采用独立样本t检验进行统计分析。对相同处理组不同时间点的数据进行单因素方差分析 (One-Way ANOVA),差异显著时,使用Duncan's检验法进行差异性分析 (P<0.05)。2. 结果
2.1 LC50的测定
4种NH4Cl浓度处理96 h后,翘嘴鳜幼鱼呈现出不同的应激行为甚至死亡。起初躁动不安、四处游动,随着时间延长,反应更加剧烈。48 h后游动迟缓,尾鳍呈不同程度向内侧弓起,90 mg·L−1实验组鱼尾鳍与身体几乎成直角。在翘嘴鳜幼鱼氨氮胁迫96 h后,0、30、60、90 mg·L−1氨氮浓度组分别死亡0、8、18、29尾,因此计算得出96 h氨氮LC50为48.65 mg·L−1。
2.2 氨氮胁迫对翘嘴鳜幼鱼鳃Na+/K+-ATP酶活力的影响
在96 h氨氮胁迫中各组翘嘴鳜幼鱼鳃Na+/K+-ATP酶活力随时间呈降低-升高-降低的变化趋势 (图1-a)。氨氮胁迫至第6小时,鳃Na+/K+-ATP酶活力显著降低 (P<0.05),随即呈升高趋势;至第48小时已显著高于对照组,达到最高值 (对照组的1.84倍);胁迫至第96小时,Na+/K+-ATP酶活力降低,但仍显著高于对照组 (P<0.05)。
图 1 急性氨氮胁迫对翘嘴鳜幼鱼鳃呼吸代谢酶活力的影响不同小写字母表示同一处理不同时间点之间差异显著 (P<0.05);*. 实验组和对照组在胁迫后同一时间点差异显著 (P<0.05);实验组氨氮质量浓度为48.65 mg·L−1,对照组氨氮质量浓度为0 mg·L−1Figure 1. Effect of acute ammonia stress on respiratory metabolism activity in gill of S. chuatsiDifferent lowercase superscripts indicate significant difference (P<0.05) in the same treatment at different time; *. Significant difference between ammonia stress group and the control group at the same time (P<0.05); concentrations of ammonia in the stress group and the control group are 48.65 mg·L−1 and 0 mg·L−1, respectively.2.3 氨氮胁迫对鳃呼吸代谢酶的作用
急性氨氮胁迫96 h,LDH活力呈升高的变化趋势 (图1-b)。至第12小时,鳃LDH活力开始呈现升高的趋势;至第96小时显著高于对照组,达到最高值 (对照组的2.13倍)。各组翘嘴鳜幼鱼鳃HK活力呈逐步升高的变化趋势 (图1-c)。至第6小时,鳃HK活力显著升高 (P<0.05);至第48小时显著高于对照组,达到最高值 (对照组的1.70倍)。
2.4 翘嘴鳜幼鱼胃囊消化酶活力分析
在96 h急性氨氮胁迫中,胃囊AMS活力随时间呈先降低后升高的变化趋势 (图2-a)。对照组胃囊AMS活力与各实验组之间差异显著 (P<0.05)。氨氮胁迫至第6小时,胃囊AMS活力显著降低 (P<0.05);胁迫至第12小时,胃囊AMS活力达到最低值 (对照组的0.37倍),随即呈现升高的趋势;至第96小时已显著高于对照组,达到最高值 (对照组的1.23倍)。实验组胃囊胃蛋白酶活力随时间呈升高-降低的变化趋势 (图2-b)。受氨氮胁迫的影响,胁迫至第6小时,胃囊胃蛋白酶活力显著降低 (P<0.05),随即呈升高的趋势;胁迫至第48小时,胃囊胃蛋白酶活力达到最高值 (对照组的1.44倍);胁迫至第96小时,实验组胃囊胃蛋白酶活力降低,仍显著高于对照组 (P<0.05)。实验组胃囊LPS随时间呈升高-降低的趋势 (图2-c)。氨氮胁迫至第12小时,胃囊LPS活力显著升高 (P<0.05);第48小时胃囊LPS活力达到最高值 (对照组的1.71倍);胁迫至第96小时,实验组胃囊LPS活力降低,仍显著高于对照组 (P<0.05)。
2.5 翘嘴鳜幼鱼肠道消化酶活力变化
在96 h急性氨氮胁迫中,各组翘嘴鳜幼鱼肠道AMS活力随时间呈先降低后升高的变化趋势 (图2-d)。受氨氮胁迫的影响,对照组肠道AMS活力与各实验组差异显著 (P<0.05)。氨氮胁迫6 h,AMS活力显著降低 (P<0.05);第24小时肠道AMS活力达到最低值 (对照组的0.49倍),随即呈升高趋势;至第48小时已显著高于对照组,达到最高值 (对照组的1.12倍)。各组翘嘴鳜幼鱼肠道胃蛋白酶活力随时间呈先降低后升高的变化趋势 (图2-e)。氨氮胁迫至第6小时,肠道胃蛋白酶活力降低,但与对照组无显著差异 (P<0.05);胁迫至第12小时,实验组肠道胃蛋白酶活力显著降低,达到最低值 (对照组的0.89倍),随即呈升高趋势;至第96小时已显著高于对照组,达到最高值 (对照组的1.15倍)。实验组肠道LPS随时间呈逐渐升高趋势 (图2-f)。胁迫12 h肠道LPS活力显著升高 (P<0.05);至第96小时肠道LPS活力达到最高值 (对照组的2.99倍)。
3. 讨论
Na+/K+-ATP酶对环境渗透压的变化十分敏感,在硬骨鱼类中具有调节渗透压功能的重要作用[19],当水体环境中的高浓度氨氮通过鱼类鳃部进入机体时,鱼类也能够通过广泛分布于鳃组织中的Na+/K+-ATP酶与Na+/K+ (NH4 +) 载体以跨膜运输的方式将氨排出体外[20-21]。攀鲈 (Anabas testudineus) 在氨氮胁迫下其鳃部Na+/K+-ATP酶活力在氨氮胁迫1和6 d后均显著升高,且与胁迫时间呈正相关[22],这表明水体环境中氨氮浓度的变化能够诱导或抑制Na+/K+-ATP酶活力。本实验发现在氨氮胁迫下翘嘴鳜幼鱼鳃部Na+/K+-ATP酶活力持续升高,说明随着胁迫时间的延长,机体诱导提高了Na+/K+-ATP酶活力,通过泌氯细胞膜两侧的转运蛋白与Na+/K+ (NH4 +) 载体将氨排出体外。胁迫至第96小时,Na+/K+-ATP酶仍显著高于对照组,但已呈下降趋势,这可能是由于高浓度的氨氮影响了Na+/K+-ATP酶的蛋白结构,使酶活力降低。鳃部组织细胞功能虽然受到氨氮毒性的影响,但其酶活力仍显著高于对照组,表明鳃主动渗透调节能力仍能通过排出氨氮维持鱼体渗透压平衡。
研究发现随着氨氮胁迫浓度的升高,硬骨鱼的耗氧率与排氨率均受到抑制[23]。HK与LDH是糖酵解过程中的重要酶类,HK能够将葡萄糖磷酸化以进行下一步的代谢反应,是糖无氧酵解反应的限速酶。LDH能够在无氧条件下催化丙酮酸生成乳酸,是生物无氧代谢的标志酶[24-25]。本研究发现翘嘴鳜幼鱼鳃组织中HK与LDH活力随氨氮胁迫时间延长而升高,并一直维持在较高水平,这说明氨氮胁迫下机体有氧呼吸过程可能受到抑制,并通过提高无氧代谢的方式提供机体所需能量。呼吸代谢模式从有氧呼吸向无氧呼吸转变的趋势,在低氧胁迫研究中则更为明显,如低氧胁迫下花鲈(Lateolabrax japanicus)幼鱼肝脏中糖原含量显著降低,LDH活力显著升高[26]。于晓[13]也发现氨氮胁迫下刺参组织中HK活力在短时间内迅速升高。因此在环境中氨氮水平升高时翘嘴鳜幼鱼呼吸代谢功能受氨氮毒性的影响,从而通过增加无氧代谢水平以维持机体能量供应,并缓解部分供氧压力,有利于机体提高对氨氮环境的适应性。
在氨氮胁迫下,随着外源性氨氮不断通过鳃、皮肤、肠道等途径进入鱼体,导致鱼类体内氨氮浓度升高,进而引发氨中毒,鱼类会产生代谢紊乱、生长迟缓、组织损伤病变等一系列毒性效应[27]。高氨氮环境下,鱼类为了维持体内氨氮积累-代谢的平衡,不仅能够活化抗氧化酶、细胞修复因子、免疫因子以修复组织氧化损伤,通过排泄系统、呼吸系统将过多的氨氮排出体外,还可以通过降低活动频率、消化代谢水平以减少体内氨的生成,从而降低氨氮毒性水平[28]。本实验中,氨氮胁迫至第6小时,翘嘴鳜幼鱼胃囊与肠道AMS活力、胃囊胃蛋白酶活力显著下降 (P<0.05)。这说明氨氮胁迫初期,鱼类一方面降解、排出外源性氨氮,同时降低机体消化代谢水平,进一步降低体内氨氮水平,以规避毒性效应的不利影响。在三疣梭子蟹 (Portunus trituberculatus) 的急性氨氮胁迫研究中也发现AMS、胃蛋白酶活力在胁迫初期呈下降趋势[29]。然而在持续的氨氮胁迫下,鱼类为维持体内氨氮积累-代谢的平衡,需要消耗的能量远远高于机体的正常代谢水平,这也刺激了鱼类相应提高消化酶活力以增加能量供给,增强机体对氨氮环境的适应性。实验中氨氮胁迫第12小时后,AMS、胃蛋白酶、LPS呈上升趋势。这说明在持续的高浓度氨氮胁迫下,机体诱导消化酶活力升高,分解体内糖类、蛋白质、脂肪供应机体适应高氨氮环境所消耗的能量。随着氨氮胁迫时间的延长,氨氮不断以NH3的形式经鳃、表皮和肠黏膜等进入鱼体,胃、肠道等消化器官中的血氨含量不断升高,器官表层黏膜持续胁迫于高氨氮环境中可导致消化器官损伤,消化机能下降[30]。本实验中鳜鱼幼鱼胁迫至第96小时,胃囊AMS与肠道胃蛋白酶、LPS活力再次升高,说明持续氨氮胁迫条件下,鱼类通过代谢、排出的方式排出过多的外源性氨氮,降低血氨含量,能量需求大量增加。这可能是由于消化酶活力受机体调控“代偿”性升高,以维持机体的能量供给[31]。本研究还发现,在96 h胁迫过程中AMS活力先降低后升高的变化程度显著高于胃蛋白酶与LPS,这可能与糖类的代谢机制有关。这与李波[32]、常志成等[26]的研究结果相似,即AMS活力急剧升高可能是由于鱼类消化代谢糖类物质供应能量时氧卡系数最高,在供氧不足时鱼类诱导AMS活力急剧升高,以消化代谢体内糖类物质来供应能量。
-
表 1 基于线粒体ND2基因的少鳞鱚6个种群遗传多样性
Table 1 Genetic diversity in seven S. japonica populations based on mtDNA ND2 gene
种群
population样本数
number of individuals单倍型数目
number of haplotypes多态位点数目
number of polymorphic sites单倍型多样性
Hd核苷酸多样性
π莱州 LZ 19 12 16 0.924 0±0.045 8 0.005 788±0.003 723 胶南 JN 20 13 17 0.957 9±0.025 5 0.007 800±0.004 739 舟山 ZS 20 13 34 0.947 4±0.032 3 0.013 019±0.007 349 厦门 XM 20 17 21 0.984 2±0.020 5 0.010 282±0.005 993 汕头 ST 20 14 48 0.915 8±0.054 6 0.014 225±0.007 953 北海 BH 20 13 19 0.910 5±0.053 8 0.007 678±0.004 677 总计 total 119 51 77 0.945 3±0.015 5 0.009 718±0.005 445 表 2 少鳞鱚不同群体间平均遗传距离
Table 2 Average genetic distances among different S. japonica populations
种群
population北海
BH胶南
JN莱州
LZ汕头
ST厦门
XM胶南 JN 0.007 74 莱州 LZ 0.006 85 0.006 88 汕头 ST 0.008 64 0.008 51 0.007 66 厦门 XM 0.009 11 0.009 02 0.008 50 0.010 02 舟山 ZS 0.008 04 0.007 95 0.007 42 0.008 98 0.009 17 表 3 基于ND2序列单倍型频率的少鳞鱚群体FST (对角线下) 和相应P (对角线上)
Table 3 F-Statistics (below diagonal) and FST P value (above diagonal) from haplotype frequencies of S. japonica
种群
population北海
BH胶南
JN莱州
LZ汕头
ST厦门
XM舟山
ZSBH 0.625 00 0.201 17 0.898 44 0.535 16 0.564 45 JN −0.008 44 0.434 57 0.693 36 0.457 03 0.517 58 LZ 0.000 93 0.012 84 0.638 67 0.018 55 0.021 48 ST −0.005 06 −0.011 29 −0.002 92 0.355 47 0.654 30 XM −0.001 54 −0.004 82 0.044 38 0.003 94 0.826 17 ZS −0.002 41 −0.005 85 0.035 13 −0.013 66 −0.014 16 表 4 少鳞鱚群体线粒体ND2基因的AMOVA分析
Table 4 AMOVA analysis of S. japonica populations based on mtDNA ND2 gene
变异来源
source of variation自由度
df平方和
SS方差分量
variance components变异百分比
percentage of variation种群间 among populations 5 9.720 0.000 78Va 0.04 种群内 within populations 113 217.911 1.928 41Vb 99.96 总计 total 118 227.630 1.929 19 固定值 fixation index (FST) 0.000 41 注:Va. 组群间方差、Vb. 组群内群体间方差
Note: Va. variance between groups; Vb. variance between groups within the group表 5 少鳞鱚群体中性检验及分化时间
Table 5 Neutral test and differentiation time of fit for S. japonica
中性检验
neutral test莱州
LZ胶南
JN舟山
ZS厦门
XM汕头
ST北海
BHTajima's D −1.918 06 −1.678 23 −0.721 48 −1.244 16 −2.098 64 −1.378 17 P 0.012 00 0.033 00 0.272 00 0.090 00 0.008 00 0.072 00 Fu's Fs −7.368 12 −6.792 29 −3.610 54 −12.466 49 −4.380 38 −6.687 65 P 0.000 00 0.001 00 0.050 00 0.000 00 0.030 00 0.003 00 Tau 2.2 3.7 3.5 4.3 5.3 3.4 T (Mya) 0.12 0.21 0.19 0.24 0.29 0.18 表 6 少鳞鱚种群中性检验
Table 6 Neutral test of population for S. japonica
数量
numberTajima's D Fu's Fs 偏离方差
SSDRg D P Fs P 119 −2.223 54 0 −25.916 43 0 0.001 89 0.020 24 -
[1] NELSON J S. Fishes of the world[M]. New Jersey: John Wiley & Sons, 2016: 503.
[2] MCKAY R J. An annotated and illustrated catalogue of the sillago, smelt or Indo-Pacific whiting species known to date[R]. Rome: FAO, 1992: 1-83.
[3] SANO J. Fisheries management by spawning per recruit analysis and yield per recruit analysis for Sillago japonica around the coastal waters of Itoshima [Japan] area[R]. Bulletin of Fukuoka Fisheries & Marine Technology Research Center, Fukuoka, 2004: 46-47.
[4] SHIMASAKI Y, OSHIMA Y, INOUE S, et al. Effect of tributyltin on reproduction in Japanese whiting, Sillago japonica[J]. Mar Environ Res, 2006, 62(S): S245-S248.
[5] OOZEKI Y, HWANG P P, HIRANO R. Larval development of the Japanese whiting, Sillago japonica[J]. Jpn J Ichthyol, 1992, 39(1): 59-66.
[6] KASHIWAGI M, KONDO S, YOSHIDA W, et al. Effects of temperature and salinity on hatching success of Japanese whiting Sillago japonica eggs[J]. Suisan Zoshoku, 2000, 48(4): 637-642.
[7] SULISTIONO S, WATANABE S, YOKOTA M. Reproduction of the Japanese whiting, Sillago japonica, in Tateyama Bay[J]. Aquacult Sci, 1999, 47(2): 209-214.
[8] RAHMAN S M, MAJHI S K, SUZUKI T A, et al. Suitability of cryoprotectants and impregnation protocols for embryos of Japanese whiting Sillago japonica[J]. Cryobiology, 2008, 57(2): 170-174. doi: 10.1016/j.cryobiol.2008.08.002
[9] RAHMAN S M, STRUESSMANN C A, SUZUKI T, et al. Electroporation enhances permeation of cryoprotectant (dimethyl sulfoxide) into Japanese whiting (Sillago japonica) embryos[J]. Theriogenology, 2013, 79(5): 853-858. doi: 10.1016/j.theriogenology.2013.01.002
[10] SULISTIONO S, YOKOTA M, KITADA S, et al. Age and growth of Japanese whiting Sillago japonica in Tateyama Bay[J]. Fish Sci, 1999, 65(1): 117-122.
[11] ARAYAMA K, IMAI H, KOHNO H, et al. Early life story of Japanese whiting Sillago japonica occurring in the surf zone of sandy beaches Tateyama Bay, central Japan[J]. Nippon Suisan Gakkaishi, 2003, 69(3): 359-367. doi: 10.2331/suisan.69.359
[12] 杨亚峰, 宋娜, 肖家光, 等. 莱州湾少鳞的形态特征描述[J]. 齐鲁渔业, 2016, 33(10): 8-10. [13] 潘晓哲, 高天翔. 基于耳石形态的属鱼类鉴别[J]. 动物分类学报, 2010, 35(4): 799-805. [14] 薛泰强, 杜宁, 高天翔. 基于线粒体COI及Cytb基因的4种科鱼类系统发育研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(S1): 91-98. [15] 肖家光. 基于线粒体基因组全序列的属鱼类系统发育研究[D]. 青岛: 中国海洋大学, 2015: 44-53. [16] GAO T X, YANG T Y, YANAGIMOTO T, et al. Levels and patterns of genetic variation in Japanese whiting (Sillago japonica) based on mitochondrial DNA control region[J]. Mitochondrial DNA Pt A, 2019, 30(1): 172-183. doi: 10.1080/24701394.2018.1467411
[17] 王林燕. 基于微卫星标记的中国和少鳞群体遗传学研究[D]. 青岛: 中国海洋大学, 2014: 36-64. [18] VELLEND M, GEBER M A. Connections between species diversity and genetic diversity[J]. Ecol Lett, 2005, 8(7): 767-781. doi: 10.1111/ele.2005.8.issue-7
[19] JUAN Y, ZHONG Z Q, FEN L. Mitochondrial DNA and its application to the molecular population genetics of fish[J]. Ecol Sci, 2008, 27(4): 272-276.
[20] WILSON A C, CANN R L, CARR S M, et al. Mitochondrial DNA and two perspectives on evolutionary genetics[J]. Biol J Linn Soc, 2010, 26(4): 375-400.
[21] 杨喜书, 章群, 余帆洋, 等. 华南6水系与澜沧江-湄公河攀鲈线粒体ND2基因的遗传多样性分析[J]. 南方水产科学, 2017, 13(3): 43-50. doi: 10.3969/j.issn.2095-0780.2017.03.006 [22] 阮燕如. 基于线粒体ND2基因序列的华南地区斑鳢遗传多样性研究[D]. 广州: 暨南大学, 2014: 52-53. [23] 伊西庆. 中国东部6个大型湖泊翘嘴鲌(Culter alburnus)遗传多样性的线粒体ND2基因序列分析[D]. 广州: 暨南大学, 2009: 31-35. [24] GEORGE A L, CALDIERARO J B, CHARTRAND K M. Population genetics of the blue shiner, Cyprinella caerulea[J]. Southeast Nat, 2008, 7(4): 637-650. doi: 10.1656/1528-7092-7.4.637
[25] VERISSIMO A, MCDOWELL J R, GRAVES J E. Genetic population structure and connectivity in a commercially exploited and wide-ranging deepwater shark, the leafscale gulper (Centrophorus squamosus)[J]. Mar Freshw Res, 2012, 63(6): 505-512. doi: 10.1071/MF11237
[26] SAMBROOK J, FRITSCH E F, MANIATIS T. Molecular cloning: a laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 1982: 76-82.
[27] CLEWLEY J P. Macintosh sequence analysis software. DNAStar's LaserGene[J]. Mol Biotechnol, 1995, 3(3): 221-224. doi: 10.1007/BF02789332
[28] ROZAS J, FERRERMATA A, SÁNCHEZDELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets[J]. Mol Biol Evol, 2017, 34(12): 3299-3302. doi: 10.1093/molbev/msx248
[29] EXCOFFIER L, LISCHER H E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567. doi: 10.1111/men.2010.10.issue-3
[30] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
[31] ROGERS A R, HARPENDING H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Mol Biol Evol, 1992, 9(3): 552-569.
[32] BERMINGHAM E S, MCCAFFERTY A. Molecular systematics of fishes[M]. New York: Academic Press, 1997: 113-126.
[33] FERGUSON J H. On the use of genetic divergence for identifying species[J]. Biol J Linn Soc, 2015, 75(4): 509-516.
[34] SKIBINSKI D F. DNA tests of neutral theory: applications in marine genetics[M]. Berlin: Springer Netherlands, 2000: 137-152.
[35] FU Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925.
[36] BONIN A, NICOLE F, POMPANON F, et al. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation[J]. Conserv Biol, 2007, 21(3): 697-708. doi: 10.1111/cbi.2007.21.issue-3
[37] NEI M. Molecular evolutionary genetics[M]. New York: Columbia University Press,1987: 92-145.
[38] 王秀亮. 玉筋鱼群体遗传多样性及其适应进化研究[D]. 舟山: 浙江海洋大学, 2017: 24-25. [39] XU S Y, SUN D R, SONG N, et al. Local adaptation shapes pattern of mitochondrial population structure in Sebastiscus marmoratus[J]. Environ Biol Fish, 2017, 100(7): 763-774. doi: 10.1007/s10641-017-0602-5
[40] WRIGHT S. Evolution and the genetics of populations[M]. Chicago: University of Chicago Press, 1968: 76-79.
[41] HEWITT G M. Genetic consequences of climatic oscillations in the quaternary[J]. Philos T R Soc B, 2004, 359(1442): 183-195. doi: 10.1098/rstb.2003.1388
[42] 刘海松. 地貌学及第四纪地质学[M]. 北京: 地质出版社, 2013: 10-11. [43] 沈浪, 陈小勇, 李媛媛. 生物冰期避难所与冰期后的重新扩散[J]. 生态学报, 2002, 22(11): 1983-1990. doi: 10.3321/j.issn:1000-0933.2002.11.026 -
期刊类型引用(9)
1. 王恒杰,戴梦杨,王倩,熊信宇,王灿莉,袁向阳. 环境胁迫因子对鱼类健康影响的研究进展. 中国农学通报. 2025(02): 157-164 . 百度学术
2. 罗寒雨,刘笑,郑菲菲,毛天宇,冯柯尧,孙艳红,祝东梅. 翘嘴鳜肝脏组织原代细胞培养技术的建立. 水产科学. 2024(05): 808-816 . 百度学术
3. 陈旭 ,左涛 ,周胜杰 ,杨蕊 ,于刚 ,秦传新 ,马振华 . 饲喂甘草后低盐胁迫对尖吻鲈相关酶活性的影响. 水产科学. 2023(03): 404-412 . 百度学术
4. 张成硕 ,赵岩 ,王艳玲 ,曾萌冬 ,赵金良 . 酸碱胁迫对鳜存活率、组织结构及解毒酶活性的影响. 水产科学. 2023(04): 640-647 . 百度学术
5. 卫明亮,张志伟,张志勇,林志杰,祝斐,贾超峰,孟乾,徐大凤,张曹进. 冷应激对黑鲷组织损伤及细胞凋亡基因表达的影响. 南方水产科学. 2022(05): 110-117 . 本站查看
6. 杨慧,胡华蓉. 华东地区活鱼运输应激反应研究及预防建议. 黑龙江水产. 2022(06): 68-69 . 百度学术
7. 韩朝婕,陈屹洋,贺振楠,张严匀,周文礼,高金伟,贾旭颖. 氨氮胁迫对水产动物生长、消化酶及免疫影响的研究进展. 河北渔业. 2021(05): 32-35 . 百度学术
8. 张三珊,刘海粟,林妙华,廖绍安,王安利,付胜利. 大蒜和茯苓对草鱼幼鱼肠道结构、功能及肠道微生物群落的影响. 饲料工业. 2021(22): 6-13 . 百度学术
9. 刘炜,周国勤,裴雪莹,茆健强,陈树桥,张雷鸣,石晓兰. 运输密度对兴凯湖翘嘴鲌水箱水质的影响. 中国农学通报. 2021(35): 124-130 . 百度学术
其他类型引用(7)