doi: 10.12131/20190042

文章编号: 2095-0780-(2019) 05-0084-08

基于线粒体 ND2 基因序列的少鳞蟢遗传多样性研究

郑德育,郭易佳,杨天燕,高天翔,郑 瑶,袁冬皓,斯舒谨 (浙江海洋大学水产学院,浙江舟山 316022)

摘要: 以莱州、胶南、舟山、厦门、汕头和北海 6 个群体 119 尾少鳞鳝 (*Sillago japonica*) 为研究对象,采用 PCR 扩增测序获得长度为 450 bp 的线粒体 DNA NADH 脱氢酶亚基 2 (*ND*2) 基因片段,共检测到 77 个变异位 点,其中简约信息位点 30 个,单变异位点 28 个,无碱基缺失。119 条序列定义了 61 个单倍型,平均单倍型多 样性 (*H*_d) 和核苷酸多样性 (π) 分别为 0.945 3±0.015 5 和 0.009 718±0.005 445。6 个群体间的平均遗传距离为 0.008 3,遗传分化指数 *F*_{ST} 均小于 0.05,各群体间无显著遗传分化。AMOVA 分析得出少鳞鳝的遗传变异主要 来自于种群内个体间 (99.96%)。中性检验的 Tajima's *D* 和 Fu's *Fs* 统计值均为负值且显著偏离中性,核苷酸不配 对分布图呈现明显的单峰分布,表明少鳞鳝历史上经历了群体扩张事件,估算扩张时间大约在 (0.12~0.29) 百万 年前的第四纪更新世晚期。

关键词:少鳞蟢; *ND*2 基因;遗传多样性;群体扩张 中图分类号: S 913.4 **文献标志码:** A

开放科学(资源服务)标识码(OSID):

Genetic diversity analysis of *Sillago japonica* based on mitochondrial DNA *ND*2 gene

ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin (Fishery College, Zhejiang Ocean University, Zhoushan 316022, China)

Abstract: A total of 119 individuals of *Sillago japonica* were collected from six sampling sites (Laizhou, Jiaonan, Zhoushan, Xiamen, Shantou and Beihai). The length of 450 bp NADH dehydrogenase subunit 2 (*ND*2) gene fragment was amplified and sequenced. No base insertion or deletion mutations occurred and 77 mutation sites were detected, including 30 parsimony informative sites and 28 singleton polymorphic sites. Sixty-one haplotypes were defined in 119 sequences. The average haplotype diversity (H_d) and nucleotide diversity (π) were 0.945 3±0.015 5 and 0.009 718±0.005 445, respectively. The average genetic distance among the six populations was 0.008 3, and the genetic differentiation index F_{ST} value was less than 0.05, indicating no significant genetic differentiation among the populations. Analysis of molecular variance (AMOVA) shows that genetic variation of *S. japonica* mainly resided among individuals within populations (99.96%). The neutral tests (Tajima's *D* and Fu's *Fs*) were both negative and deviated from the neutral significantly. Besides, the nucleotide mismatches distribution showed a unimodal distribution, indicating that *S. japonica* had experienced population expansion in history. The estimated expansion time was about 0.12–0.29 million years ago in late Pleistocene.

Key words: Sillago japonica; NADH dehydrogenase subunit 2 gene; genetic diversity; population expansion

通信作者:杨天燕(1982---),女,博士,高级工程师,从事鱼类种群遗传学研究。E-mail: hellojelly1130@163.com

收稿日期:2019-02-25;修回日期:2019-04-24

资助项目:浙江省大学生科技创新活动计划暨新苗人才计划(2018R411057);国家自然科学基金项目(31572227,41776171);浙江海洋大学 2016—2017 年度人才引进科研基金;浙江海洋大学水产省一流学科大学生创新性科研项目

作者简介:郑德育 (1998—),男,本科生,从事海洋生物资源与环境研究。E-mail: 723259288@qq.com

少鳞鳝 (Sillago japonica) 是鲈形目、鳝科、 **鳝属的一种小型海洋经济鱼类,主要分布在红海、** 印度洋、太平洋西部和南部,盛产于我国南海和东 海的浅水区或河口区^[1-2]。少鳞鱚肉质鲜美、营养 丰富,深受人们喜爱,也是近岸渔业捕捞对象和游 钓鱼种。20世纪末开始,日本学者围绕少鳞鳝渔 业管理^[3]、繁殖发育学^[4-7]、组织胚胎学^[8-9]和资源 生物学[10-11] 领域开展了大量基础性研究工作,近 年来国内有关其形态学和遗传学方面的研究主要集 中在外部形态特征描述^[12]、耳石形态多元统计分析^[13]、 分子系统学研究[14-15]、线粒体控制区[16]和微卫星 分子标记开发^[17]。遗传多样性反映了生物对环境变 化的适应能力,是物种多样性的基础和决定性因 素,体现在表型、染色体、蛋白质和 DNA 多个层 次水平的变异上,开展遗传多样性研究对于探讨物 种的系统进化、遗传分化和资源保护都具有十分重 要的意义^[18]。

线粒体 DNA (Mitochondrial DNA, mtDNA) 具 有分子量小、结构简单、排列紧凑,几乎不发生重 组且遵循母系遗传的特性,目前已广泛应用在鱼类 分子系统学、生物地理学和种群遗传学等诸多领 域^[19-20]。在 mtDNA 包含的 13 个蛋白质编码基因 中,NADH 脱氢酶亚基 2 (NADH dehydrogenase subunit 2, ND2) 基因由于进化速率相对较快,能 较好地反映种内与群体间的遗传变异及系统分类地 位,正逐渐应用于鱼类系统发育和种群划分研究 中^[21-25]。本研究采集了中国沿海 6 个地理种群的少鳞 續样本,基于线粒体 ND2 基因序列开展其群体 遗传多样性的研究,以期为少鳞 續种质资源的保护 提供理论依据。

1 材料与方法

1.1 实验材料

本研究所用少鳞鳝样本分别于 2017—2018 年 间采自莱州 (LZ, 19 尾)、胶南 (JN, 20 尾)、舟山 (ZS, 20 尾)、厦门 (XM, 20 尾)、汕头 (ST, 20 尾)、北海 (BH, 20 尾),共计 119 尾样品 (图 1)。 所有样品取背部新鲜肌肉组织存放于 5 mL 离心 管,加入无水乙醇固定,4 ℃ 保存备用。

1.2 基因组 DNA 提取及 PCR 扩增

剪取适量已浸泡在无水乙醇中的背部肌肉组 织,采用传统的酚-氯仿法^[26]提取少鳞鳝基因组 DNA,用无水乙醇沉淀和 75% 乙醇润洗后经自 然风干的 DNA 溶解于 100 μL 灭菌水中,置于4℃ 保存备用。

参考少鳞鳝线粒体基因组全序列 (GenBank 登录号 KR363149),采用 Primer primer 6.0 软件设计 扩增 ND2 基因的引物,分别为上游引物 ND2-1F (5'-CACG AACGCCCCTATACTCA-3')和下游引物 ND2-1R (5'-CCTGGTAGGTTGTTAGGGGA-3')。PCR 总反应体系为 25 μ L,包括 0.25 μ L 浓度为 5 U· μ L⁻¹ 的 Taq 酶,各 1 μ L 正反向引物 (10 μ mol·L⁻¹),

Fig.1 Sampling sites of S. japonica

2 µL 的 dNTPs (2.5 mmol·L⁻¹), 2.5 µL 的 10×buffer 缓冲液 (含 Mg²⁺), 1 µL 的模板 DNA (50~100 ng), 以及 17.25 µL 的灭菌双蒸水。PCR 反应程序为 95 ℃ 预变性 5 min; 95 ℃ 变性 0.5 min, 52 ℃ 退火 0.5 min, 72 ℃ 延伸 1 min,总计循环 35 次; 72 ℃ 延伸 5 min。 用 1.5% 琼脂糖凝胶电泳检测 PCR 扩增产物,凝胶 成像系统拍照后,挑选条带亮度较高的 PCR 产物 送至上海美吉生物有限公司进行测序。

1.3 数据分析

所获序列均由 DNAstar^[27] 软件包进行编辑、 校对和排序:采用 DnaSP 6.0^[28]和 Arlequin^[29] 软件进行多态位点数目 (number of polymorphic sites)、单倍型数目 (number of haplotype)、核苷酸 多样性 (nucleotide diversity) 和单倍型多样性 (haplotype diversity) 等计算; 使用 MEGA 7.0^[30] 软件基 于 Kimura 2-parameter model 参数计算少鳞嬉群体 间平均遗传距离、碱基组成和碱基转换/颠换,并 采用邻接法 (neighbor-joining, NJ) 基于 1 000 次 Bootstrap 重抽样构建单倍型系统发育树:运用 Network 软件基于中间连接法 (median-joining) 绘制 少鳞蟢单倍型网络图。使用 Arlequin^[29] 软件统计 少鳞鱚群体间的遗传分化水平,分子变异水平分 析 (analysis of molecular variance analysis, AMOVA) 种群间遗传变异情况;使用 Tajima's D 和 Fu's Fs 中性检验以及核苷酸不配对分布 (mismatch distribution)来估算种群的历史动态变化。使用公式 $\tau = 2ut^{[31]}$ 估算种群扩张时间,其中 τ 为扩张时间参 数 (Tau), u 为进化速率, $u=\mu k$, 其中 μ 为每个碱 基的变异速率, k 为所分析序列的长度, t 表示自 扩张以来所经历的代数,扩张时间 T=t×代时,μ参

考 Bermingham 和 Mccafferty^[32]的研究,采用每百 万年 2% 的突变速率。

2 结果

2.1 序列变异及遗传多样性组成

使用 DNAstar 软件包中 SeqMan 程序进行序列 比对,得到长度为450 bp的 ND2 基因片段。 119 尾少鳞鳝样本平均碱基组成为 A=20.96%, T=30.38%, G=14.05%, C=34.6%, A+T 含量 (51.34%) 略高于 G+C (48.66%), 其中 C 含量最 高,G含量最低,碱基组成偏向于嘧啶碱基。所获 得序列中多态位点数目 77 个,占所获得序列长度 的 19.84%,没有发现碱基的插入和缺失。119条 序列共检测到 61 个单倍型,从各群体所含单倍型 分布来看,厦门群体检测到的单倍型数量最多,而 莱州群体检测到的单倍型数量最少。遗传多样性参 数显示,厦门群体的单倍型多样性最高(0.984 2± 0.020 5), 北海群体单倍型多样性最低 (0.910 5± 0.053 8); 汕头群体核苷酸多样性最高 (0.014 225± 0.007 953), 莱州群体核苷酸多样性最低 (0.005 788± 0.003723,表1)。

2.2 群体遗传结构和聚类分析

在 MEGA 软件中采用 Kimura 2-parameter 模型计算少鳞鳝6 个群体间的遗传距离 (表 2),种群间的遗传距离在 0.006 85~0.010 02,其中厦门和汕头的遗传距离最大 (0.010 02);莱州和北海的遗传距离最小 (0.006 85),遗传分化尚未达到种级水平^[33]。

少鳞蟢不同群体间遗传多样性指数 (F_{ST})分析 发现两两群体间的 F_{ST} 介于-0.014 16~0.044 38,

Tab.1 Genetic diversity in seven <i>S. japonica</i> populations based on mtDNA <i>ND2</i> gene									
种群 population	样本数 number of individuals	单倍型数目 number of haplotypes	多态位点数目 number of polymorphic sites	单倍型多样性 H _d	核苷酸多样性 π				
莱州 LZ	19	12	16	0.924 0±0.045 8	0.005 788±0.003 723				
胶南 JN	20	13	17	0.957 9±0.025 5	0.007 800±0.004 739				
舟山 ZS	20	13	34	0.947 4±0.032 3	0.013 019±0.007 349				
厦门 XM	20	17	21	0.984 2±0.020 5	0.010 282±0.005 993				
汕头 ST	20	14	48	0.915 8±0.054 6	0.014 225±0.007 953				
北海 BH	20	13	19	0.910 5±0.053 8	0.007 678±0.004 677				
总计 total	119	51	77	0.945 3±0.015 5	0.009 718±0.005 445				

表1 基于线粒体ND2基因的少鳞蟢6个种群遗传多样性

表2 少鳞鳝不同群体间平均遗传距离

Т	Tab.2 Average genetic distances among different S. japonica populations									
种群	北海	胶南	莱州	汕头	厦门					
population	BH	JN	LZ	ST	XM					
胶南 JN	0.007 74									
莱州 LZ	0.006 85	0.006 88								
汕头 ST	0.008 64	0.008 51	0.007 66							
厦门 XM	0.009 11	0.009 02	0.008 50	0.010 02						
舟山 ZS	0.008 04	0.007 95	0.007 42	0.008 98	0.009 17					

除莱州和厦门、舟山群体之间差异显著外,其余群体间 P 均大于 0.05 (表 3)。采用分子方差分析 (AMOVA) 对 6 个少鳞鱚群体遗传变异来源和结构 进行统计 (表 4)。结果表明,少鳞鱚遗传变异主要

来自群体内个体间 (99.96%),其 P 检验也不显著 (P=0.426 20±0.015 26),表明少鳞蟢群体间存在广 泛的基因交流,使得遗传分化程度较低、遗传差异 不显著。

表3 基于ND2序列单倍型频率的少鳞蟢群体F_{ST}(对角线下)和相应P(对角线上)

种群 population	北海 BH	胶南 JN	莱州 LZ	汕头 ST	厦门 XM	舟山 ZS
ВН		0.625 00	0.201 17	0.898 44	0.535 16	0.564 45
JN	-0.008 44		0.434 57	0.693 36	0.457 03	0.517 58
LZ	0.000 93	0.012 84		0.638 67	0.018 55	0.021 48
ST	-0.005 06	-0.011 29	-0.002 92		0.355 47	0.654 30
XM	-0.001 54	-0.004 82	0.044 38	0.003 94		0.826 17
ZS	-0.002 41	-0.005 85	0.035 13	-0.013 66	-0.014 16	

表4 少鳞蟢群体线粒体ND2基因的AMOVA分析

Tab.4	AMOVA	analysis of	f <i>S. ji</i>	aponica	populations	based of	on mtDNA	ND2 gene
		•/						

变异来源	自由度	平方和	方差分量	变异百分比
source of variation	df	SS	variance components	percentage of variation
种群间 among populations	5	9.720	$0.000~78^{Va}$	0.04
种群内 within populations	113	217.911	1.928 41 ^{vb}	99.96
总计 total	118	227.630	1.929 19	
固定值 fixation index (F _{ST})			0.000 41	

注: Va. 组群间方差、Vb. 组群内群体间方差

Note: Va. variance between groups; Vb. variance between groups within the group

从 GenBank 数据库下载近缘种多鳞i (S. sihama, GenBank 登录号 KR363150) 和中国i (S. sinica, GenBank 登录号 KR363151) 作为外群,采用 邻接法 (neighbor-joining, NJ) 构建系统发育树 (图 2), 聚类树中不同群体的个体相互交织,没有形成明显 的分支,种群之间存在广泛的基因交流。

2.3 群体历史动态及分化时间

在1000次模拟抽样的情况下,用 Arlequin 软件对6个群体的少鳞蟢进行中性检验(表5和表6)和核苷酸不配对分析(图3)。当Tajima's D为负,且在统计学上达到显著水平,表明种群分化偏离中性突变理论模型,预示着群体在进化过程中不仅受

图2 基于ND2序列构建的少鳞蟢NJ树

外群为中国鱚和多鳞鱚

Fig.2 NJ phylogenetic tree of haplotypes based on ND2 sequences of S. japonica

S. sinica and S. sihama are selected as outgroups.

表5 少鳞蟢群体中性检验及分化时间

Tah 5	Neutral test and	differentiation	time of fit for	S ia	nnics
1 a	Trutt at test and	uniterentiation	time of me for	D. jap	Junica

中性检验 neutral test	莱州 LZ	胶南 JN	舟山 ZS	厦门 XM	汕头 ST	北海 BH
Tajima's D	-1.918 06	-1.678 23	-0.721 48	-1.244 16	-2.098 64	-1.378 17
Р	0.012 00	0.033 00	0.272 00	0.090 00	0.008 00	0.072 00
Fu's Fs	-7.368 12	-6.792 29	-3.610 54	-12.466 49	-4.380 38	-6.687 65
Р	0.000 00	0.001 00	0.050 00	0.000 00	0.030 00	0.003 00
Tau	2.2	3.7	3.5	4.3	5.3	3.4
T (Mya)	0.12	0.21	0.19	0.24	0.29	0.18

表6 少鳞蟢种群中性检验

Tab.6Neutral test of population for S. japonica										
数量	Tajima's	D	Fu's Fs		偏离方差	D				
number	D	Р	Fs	Р	SSD	Rg				
119	-2.223 54	0	-25.916 43	0	0.001 89	0.020 24				

到随机漂变因素影响,还有可能经历过大规模的群体扩张或受到过选择压力、瓶颈效应的影响^[34]。 Fu's *Fs* 检验中,如果 *Fs* 大于零,表明种群趋于稳定,反之则表明种群趋于扩张^[35]。结果表明,无论 是从群体还是个体角度来看,Tajima's *D* 和 Fu's *Fs* 均

图3 基于少鳞蟢ND2基因单倍型的核苷酸不配对分布图 Fig.3 Mismatch distribution based on ND2 gene haplotypes of S. japonica

为负值且显著偏离中性 (P<0.05),表明少鳞蟢在历 史进化过程中经历过群体扩张事件。此外,偏离方 差 (SSD)和 Raggedness index (Rg)均较小,统计检 验不显著,进一步表明群体扩增假说的成立^[29]。核 苷酸不配对分布图呈单峰且中性检验差异显著,表 明少鳞蟢群体近期可能受到了瓶颈效应的打击。根 据核苷酸不配对分布得到的 Tau,少鳞蟢性成熟时 间为1年,代时取1,计算得到少鳞蟢群体发生扩 张的时间大约在 (12~29)万年前的第四纪更新世 (Pleistocene)晚期。

3 讨论

单倍型多样性 (*h*) 和核苷酸多样性 (π) 是衡量 物种遗传多样性丰富度的重要指标,也是物种生存 适应和发展进化的前提。物种的遗传多样性越高, 对环境的适应能力越强,对变化也有更强的调整能 力^[36]。本研究表明中国沿海少鳞蟢群体遗传多样 性较高 (*h*=0.945 3, π=0.009 718),与薛泰强等^[14] 和王林燕^[17]分别采用控制区序列和微卫星分子标 记对不同地理群体少鳞蟢遗传结构的分析结果相 似,都呈现出相对丰富的遗传多样性水平。这可能 与*ND*2 基因本身具有较高的突变速率有关,另外 种群的高单倍型多样性与种群的数量、所处环境的 变化以及生活习性有密切联系^[37],少鳞蟢种群繁殖 时间较长,单次后代产生数量大,能够弥补因捕 食、捕捞等带来的种群缺失,使其存在较高的遗传多 样性。

莱州群体核苷酸多样性指数最低,且与厦门、

舟山群体间的遗传差异显著。由于莱州位于采样点 最北端,受渤海沿岸流和黄海冷水团的共同作用, 所处海域水温相对较低,而浙闽沿岸受亚热带海洋 性季风气候影响,水温普遍偏高,推测温度变化可 能对少鳞嬉遗传变异产生一定影响。鱼类作为变温 性动物,温度变化对其分布和生长发育都具有重要 影响。温度变化限制了鱼类成体的扩散并促进其适 应局限的生存环境,使得彼此间交流的概率大幅降 低,这种差异经长期积累并最终导致遗传分化。有 文献资料表明,一些海洋鱼类的遗传多样性分布受 到温度和纬度变化的影响,如王秀亮^[38]对西北太 平洋玉筋鱼 (Ammodvtes personatus) Cvt b 基因研究 发现,玉筋鱼单倍型频率在地理分布上与水温变化 具有相关性,因而推测水域环境温度的改变以及洋 流系统对玉筋鱼种群扩散及种群地理分布格局可能 有着重要影响;Xu等^[39]对中日沿海5个群体褐菖 鲉 (Sebastiscus marmoratus) ATP6 和 Cyt b 基因所 编码的氨基酸替换率进行比较时发现,温度可能是 影响群体遗传结构和遗传分化的潜在环境因素。

遗传多样性指数 Fst 是评价物种群体间遗传分 化尺度的标准。Wright^[40]的研究发现,若 $F_{ST}>$ 0.25, 表明群体间存在高度分化, 0.15<Fst<0.25, 表示群体间存在中度分化, 0.05<Fst<0.15 表示群 体间存在低度分化,而F_{st}<0.05则表明群体间没 有分化。本研究发现少鳞鱚各群体间 F_{ST} 均小于 0.05,结合平均遗传距离的大小来看,暗示群体间 未发生明显的遗传分化,这与 Gao 等^[16]的研究结 果一致。推测少鳞鳝这类小型鱼类群体数量大、分 布范围广,加之早期营浮游生活时间长、本身具备 较强迁移能力,基因交流频繁造成遗传的同质化, 使得种群间遗传分化水平普遍偏低,阻碍了种群的 分化。此外,基于邻接法构建的系统关系树显示来 自不同群体的个体彼此相互交错分布,没有呈现显 著的谱系结构,也反映了少鳞嬉遗传分化水平较低 这一结论。

Hewitt^[41] 通过研究证实,更新世的剧烈气候波 动对地球上动植物遗传多样性和分布格局产生了重 要影响。基于线粒体控制区序列估算出中日韩不同 地理种群少鳞 鱚发生群体扩张的时间大约在 (0.423~1.06)百万年前的晚更新世时期^[16],本研究 对 ND2 基因的核苷酸不配对分析得出少鳞蟢群体 分化时间大约在 (0.12~0.29)百万年前的第四纪冰 川期-间冰期旋回^[42]。尽管线粒体不同序列变异速 率存在一定差异,但推算出扩张时间均处于第四纪 更新世晚期,这一时期气候的急剧变化,全球性大 幅度气温变冷,中高纬形成大面积冰盖,大气环流 和洋流的变化直接影响动植物生长、演化和分布, 导致大量生物种群的迁徙或者灭绝^[43],使得少鳞 蟢等海洋鱼类的空间分布格局以及遗传结构发生了 较大变化。

鱼类种群结构的时空分布和动态变化与其所处 水域的环境因子有着密切关系,过度捕捞、水体污 染、工程建设以及外来物种入侵等都会使鱼类资源 和遗传多样性遭到破坏。基于线粒体 ND2 基因分 析的结果显示,我国沿海少鳞鱚种群遗传多样性丰 富程度较高,种质资源尚处于相对安全状态,具有 一定的资源开发与利用潜力,但由于多遗传标记结 合对于揭示种群进化历史和谱系地理格局的形成往 往更全面、更准确。因此,在今后的渔业资源管理 过程中,还需要综合采用多种分子生物学标记技术 来监测少鳞鱚的遗传多样性水平,以实现其资源多 样性的合理保护和可持续利用。

参考文献:

- NELSON J S. Fishes of the world[M]. New Jersey: John Wiley & Sons, 2016: 503.
- [2] MCKAY R J. An annotated and illustrated catalogue of the sillago, smelt or Indo-Pacific whiting species known to date[R]. Rome: FAO, 1992: 1-83.
- [3] SANO J. Fisheries management by spawning per recruit analysis and yield per recruit analysis for *Sillago japonica* around the coastal waters of Itoshima [Japan] area[R]. Bulletin of Fukuoka Fisheries & Marine Technology Research Center, Fukuoka, 2004: 46-47.
- [4] SHIMASAKI Y, OSHIMA Y, INOUE S, et al. Effect of tributyltin on reproduction in Japanese whiting, *Sillago japonica*[J]. Mar Environ Res, 2006, 62(S): S245-S248.
- [5] OOZEKI Y, HWANG P P, HIRANO R. Larval development of the Japanese whiting, *Sillago japonica*[J]. Jpn J Ichthyol, 1992, 39(1): 59-66.
- [6] KASHIWAGI M, KONDO S, YOSHIDA W, et al. Effects of temperature and salinity on hatching success of Japanese whiting *Sillago japonica* eggs[J]. Suisan Zoshoku, 2000, 48(4): 637-642.
- [7] SULISTIONO S, WATANABE S, YOKOTA M. Reproduction of the Japanese whiting, *Sillago japonica*, in Tateyama Bay[J]. Aquacult Sci, 1999, 47(2): 209-214.
- [8] RAHMAN S M, MAJHI S K, SUZUKI T A, et al. Suitability of cryoprotectants and impregnation protocols for embryos of Japan-

ese whiting *Sillago japonica*[J]. Cryobiology, 2008, 57(2): 170-174.

- [9] RAHMAN S M, STRUESSMANN C A, SUZUKI T, et al. Electroporation enhances permeation of cryoprotectant (dimethyl sulfoxide) into Japanese whiting (*Sillago japonica*) embryos[J]. Theriogenology, 2013, 79(5): 853-858.
- [10] SULISTIONO S, YOKOTA M, KITADA S, et al. Age and growth of Japanese whiting *Sillago japonica* in Tateyama Bay[J]. Fish Sci, 1999, 65(1): 117-122.
- [11] ARAYAMA K, IMAI H, KOHNO H, et al. Early life story of Japanese whiting *Sillago japonica* occurring in the surf zone of sandy beaches Tateyama Bay, central Japan[J]. Nippon Suisan Gakkaishi, 2003, 69(3): 359-367.
- [12] 杨亚峰, 宋娜, 肖家光, 等. 莱州湾少鳞鳝的形态特征描述 [J].齐鲁渔业, 2016, 33(10): 8-10.
- [13] 潘晓哲,高天翔. 基于耳石形态的嬉属鱼类鉴别 [J]. 动物分类 学报,2010,35(4):799-805.
- [15] 肖家光. 基于线粒体基因组全序列的嬉属鱼类系统发育研究 [D]. 青岛: 中国海洋大学, 2015: 44-53.
- [16] GAO T X, YANG T Y, YANAGIMOTO T, et al. Levels and patterns of genetic variation in Japanese whiting (*Sillago japonica*) based on mitochondrial DNA control region[J]. Mitochondrial DNA Pt A, 2019, 30(1): 172-183.
- [17] 王林燕. 基于微卫星标记的中国鱚和少鳞鱚群体遗传学研究 [D]. 青岛: 中国海洋大学, 2014: 36-64.
- [18] VELLEND M, GEBER M A. Connections between species diversity and genetic diversity[J]. Ecol Lett, 2005, 8(7): 767-781.
- [19] JUAN Y, ZHONG Z Q, FEN L. Mitochondrial DNA and its application to the molecular population genetics of fish[J]. Ecol Sci, 2008, 27(4): 272-276.
- [20] WILSON A C, CANN R L, CARR S M, et al. Mitochondrial DNA and two perspectives on evolutionary genetics[J]. Biol J Linn Soc, 2010, 26(4): 375-400.
- [21] 杨喜书,章群,余帆洋,等.华南6水系与澜沧江-湄公河攀鲈 线粒体 ND2 基因的遗传多样性分析 [J].南方水产科学,2017,13
 (3): 43-50.
- [22] 阮燕如. 基于线粒体 ND2 基因序列的华南地区斑鳢遗传多样 性研究 [D]. 广州: 暨南大学, 2014: 52-53.
- [23] 伊西庆. 中国东部 6 个大型湖泊翘嘴鲌 (Culter alburnus) 遗传 多样性的线粒体 ND2 基因序列分析 [D]. 广州: 暨南大学, 2009: 31-35.
- [24] GEORGE A L, CALDIERARO J B, CHARTRAND K M. Population genetics of the blue shiner, *Cyprinella caerulea*[J]. Southeast Nat, 2008, 7(4): 637-650.
- [25] VERISSIMO A, MCDOWELL J R, GRAVES J E. Genetic population structure and connectivity in a commercially exploited and wide-ranging deepwater shark, the leafscale gulper (*Centrophor-*

us squamosus)[J]. Mar Freshw Res, 2012, 63(6): 505-512.

- [26] SAMBROOK J, FRITSCH E F, MANIATIS T. Molecular cloning: a laboratory manual[M]. New York: Cold Spring Harbor Laboratory Press, 1982: 76-82.
- [27] CLEWLEY J P. Macintosh sequence analysis software. DNA-Star's LaserGene[J]. Mol Biotechnol, 1995, 3(3): 221-224.
- [28] ROZAS J, FERRERMATA A, SÁNCHEZDELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets[J]. Mol Biol Evol, 2017, 34(12): 3299-3302.
- [29] EXCOFFIER L, LISCHER H E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567.
- [30] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874.
- [31] ROGERS A R, HARPENDING H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Mol Biol Evol, 1992, 9(3): 552-569.
- [32] BERMINGHAM E S, MCCAFFERTY A. Molecular systematics of fishes[M]. New York: Academic Press, 1997: 113-126.
- [33] FERGUSON J H. On the use of genetic divergence for identifying species[J]. Biol J Linn Soc, 2015, 75(4): 509-516.
- [34] SKIBINSKI D F. DNA tests of neutral theory: applications in

marine genetics[M]. Berlin: Springer Netherlands, 2000: 137-152.

- [35] FU Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925.
- [36] BONIN A, NICOLE F, POMPANON F, et al. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation[J]. Conserv Biol, 2007, 21(3): 697-708.
- [37] NEI M. Molecular evolutionary genetics[M]. New York: Columbia University Press, 1987: 92-145.
- [38] 王秀亮. 玉筋鱼群体遗传多样性及其适应进化研究 [D]. 舟山: 浙江海洋大学, 2017: 24-25.
- [39] XU S Y, SUN D R, SONG N, et al. Local adaptation shapes pattern of mitochondrial population structure in *Sebastiscus marmoratus*[J]. Environ Biol Fish, 2017, 100(7): 763-774.
- [40] WRIGHT S. Evolution and the genetics of populations[M]. Chicago: University of Chicago Press, 1968: 76-79.
- [41] HEWITT G M. Genetic consequences of climatic oscillations in the quaternary[J]. Philos T R Soc B, 2004, 359(1442): 183-195.
- [42] 刘海松. 地貌学及第四纪地质学 [M]. 北京: 地质出版社, 2013: 10-11.
- [43] 沈浪,陈小勇,李媛媛生物冰期避难所与冰期后的重新扩散[J]. 生态学报, 2002, 22(11): 1983-1990.