WANG Xiao-yu, YU Da-hui, GONG Shi-yuan. Isolation and usefulness of codominant markers from AFLPs and modifications of AFLP technique[J]. South China Fisheries Science, 2005, 1(2): 67-72.
Citation: WANG Xiao-yu, YU Da-hui, GONG Shi-yuan. Isolation and usefulness of codominant markers from AFLPs and modifications of AFLP technique[J]. South China Fisheries Science, 2005, 1(2): 67-72.

Isolation and usefulness of codominant markers from AFLPs and modifications of AFLP technique

More Information
  • Received Date: April 11, 2005
  • Amplified Fragment Length Polymorphism (AFLP) is a new molecular marker technique on the basis of PCR. AFLPs are widely employed in many fields and become more and more popular. Yet AFLPs are dominant markers and have natural limitations. How to convert dominant AFLP markers into codominant markers and the modifications of AFLP technique are the main focus of this review. The applications of the AFLP-derived markers are reviewed as well.

  • [1]
    Zebeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerpriting[P]. European Patent Application Number: 94202629.7 (Publication No. 0534858a1). Paris: European Patent Office, 1993. https://www.semanticscholar.org/paper/SELECTIVE-RESTRICTION-FRAGMENT-AMPLIFICATION%3A-A-FOR/c01a2317c5b4545d53f89c0bc466be76e8bf0204
    [2]
    Vos P, Hogers R, Bleeker M, et al. AFLP: new technique for DNA fingerpringting[J]. Nucleic Acids Res, 1995, 23(21): 4407-4414. doi: 10.1093/nar/23.21.4407
    [3]
    王志勇, 王艺磊, 林利民, 等. 福建官井洋大黄鱼AFLP指纹多态性的研究[J]. 中国水产科学, 2002, 9(3): 198-202. doi: 10.3321/j.issn:1005-8737.2002.03.002
    [4]
    Han K, Ely B. Use of AFLP analyses to assess genetic variation in Morone and Thunnus species[J]. Mar Biotech, 2002, 4(2): 141-145. doi: 10.1007/s10126-001-0080-8
    [5]
    王艺磊, 戴军, 姚扬烈. 利用AFLP技术筛选锯缘青蟹性别差异DNA片段[J]. 中国水产科学, 2004, 11(4): 286-290. doi: 10.3321/j.issn:1005-8737.2004.04.002
    [6]
    Griffiths R, Orr K. The use of amplified fragment length polymorphism (AFLP) in the isolation of sex-specific markers[J]. Molecular Ecol, 1999, 8(4): 671-674. doi: 10.1046/j.1365-294x.1999.00578.x
    [7]
    Li Y T, Byrne K, Miggiano E, et al. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers[J]. Aquaculture, 2003, 219(1-4): 143-156. doi: 10.1016/S0044-8486(02)00355-1
    [8]
    Jia J H, Li C Y, Deng Q Y, et al. Rapid constructing a genetic linkage map by AFLP technique and mapping a new gene tms5[J]. Acta Botanica Sinica, 2003, 45(5): 614-620. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsRU5HTmV3UzIwMjQwOTEwMTY1MjU1EiAyODUwYmM3ODQ2ZDBlZTcxMWYxMmQ2ZjcyZjNlYzg1ORoIeHQxNXBxNTM%3D
    [9]
    Piepho H, Koch G. Codominant analysis of banding data from a dominant marker system by normal mixtures[J]. Genetics, 2000, 155(3): 1459-1468. doi: 10.1093/genetics/155.3.1459
    [10]
    The international SNP map working group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J]. Nature, 2001, 409(6822): 928-933. doi: 10.1038/35057149
    [11]
    Nicod J C, Largiadèr C R. SNPs by AFLP (SBA): a rapid SNP isolation strategy for non-model organisms[J]. Nucleic Acids Res, 2003, 31(5): 1-5. doi: 10.1093/nar/gng019
    [12]
    Brugmans B, Hulst R G M, Visser R G F, et al. A new and versatile method for the successful conversion of AFLP markers into simple single locus markers[J]. Nucleic Acids Res, 2003, 31(10): 1-9. doi: 10.1093/nar/gng055
    [13]
    Gao G Q, He G H, Li Y R. Mocrosatellite enrichment from AFLP fragments by magnetic beads[J]. Acta Botanica Sinica, 2003, 45(11): 1266-1269. https://www.semanticscholar.org/paper/Microsatellite-Enrichment-from-AFLP-Fragments-by-Guo-qing-Guo-hao/82b2bcb23bf30d1ef94329d4c4d7171276239fae
    [14]
    Zane L, Bargellon L, Patarnello T. Strategies for microsatellite isolation: a review[J]. Molecular Ecol, 2002, 11: 1-16. doi: 10.1046/j.0962-1083.2001.01418.x
    [15]
    高国庆, He Guo-hao, 李杨瑞. 花生微卫星DNA分离方法的研究[J]. 中国油料作物学报, 2003, 25(3): 30-33. doi: 10.3321/j.issn:1007-9084.2003.03.008
    [16]
    Wong A, Forbes M R, Smith M L. Characterization of AFLP markers in damselflies: prevalence of codominant markers and implications for population genetic applications[J]. Genome, 2001, 44(4): 677-684. doi: 10.1139/g01-051
    [17]
    Xu M L, Huaracha E, Korban S S. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple[J]. Genome, 2001, 44(1): 63-70. doi: 10.1139/g00-103
    [18]
    Nair S, Bentur J S, Prasada Rao U, et al. DNA markers tightly linked to a gall midge resistance gene (Gm2) are potentially useful for marker-aided selection in rice breeding[J]. Theoretical and Applied Genetics, 1995, 91(1): 68-73. doi: 10.1007/BF00220860
    [19]
    Behura S K, Nair S, Sahu S C, et al. An AFLP marker that differentiates biotypes of the Asian rice gall midge (Orseolia oryzae, Wood-Mason) is sex-linked and also linked to avirulence[J]. Molecular Genetics and Genomics, 2000, 263(2): 328-334. doi: 10.1007/s004380051175
    [20]
    Dussle C M, Quint M, Xu M L, et al. Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers[J]. Theoretical and Applied Genetics, 2002, 105(8): 1190-1195. doi: 10.1007/s00122-002-0964-7
    [21]
    Bradeen J M, Simon P W. Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form[J]. Theoretical and Applied Genetics, 1998, 97(5-6): 960-967. doi: 10.1007/s001220050977
    [22]
    Nielsen R. Estimation of population parameters and recombination rates from single nucleotide polymorphisms[J]. Genetics, 2000, 154(2): 931-942. doi: 10.1093/genetics/154.2.931
    [23]
    Kuhner M K, Beerli P, Yamato J, et al. Usefulness of single nucleotide polymorphism data for estimating population parameters[J]. Genetics, 2000, 156(1): 439-447. doi: 10.1093/genetics/156.1.439
    [24]
    Bensch S, Akesson S, Irwin D E, et al. The use of AFLP to find an informative SNP: genetic differences across a migratory divide in willow warblers[J]. Molecular Ecol, 2002, 11(11): 2359-2366. doi: 10.1046/j.1365-294X.2002.01629.x
    [25]
    Meksem K, Ruben E, Hyten D, et al. Conversion of AFLP bands into high-throughput DNA markers[J]. Molocular Genetics and Genomics, 2001, 265(2): 207-214. doi: 10.1007/s004380000418
    [26]
    陈洪, 王振山, 朱立煌. SRFA法构建水稻DNA指纹图谱[J]. 生物工程学报, 1996, 12(3): 266-269. https://www.cqvip.com/doc/journal/995114793
    [27]
    Suazo A, Glenn H H. Modification of the AFLP protocol applied to honey bee (Apis mellifera L. ) DNA[J]. Biotechiques, 1999, 26(4): 704-709. doi: 10.2144/99264st07
    [28]
    Ranamukhaarachchi D G, Kane M E, Guy C L, et al. Modified AFLP technique for rapid genetic characterization in plants[J]. Biotechniques, 2000, 29(4): 858-866. doi: 10.2144/00294rr02
    [29]
    Velappan N, Snodgrass J L, Hakovirta J R, et al. Rapid identification of pathogenic bacteria by single-enzyme amplified fragment length polymorphism analysis[J]. Diagnostic Microbiology and Infectious Dis, 2001, 39(2): 77-83. doi: 10.1016/S0732-8893(00)00235-2
    [30]
    Singh A, Chaudhury A, Srivatava P S, et al. Comparison of AFLP and SAMPL markers for assessment of intra-population genetic variation in Azadirachta indica A. Juss[J]. Plant Sci, 2002, 162(1): 17-25. doi: 10.1016/S0168-9452(01)00503-9
    [31]
    van der Wurff A W G, Chan Y L, van Straaln N M, et al. TE-AFLP: combining rapidity and robustness in DNA fingerprinting[J]. Nucleic Acids Res, 2000, 28(24): 5005-5009 (e105). doi: 10.1093/nar/28.24.e105
    [32]
    [33]
    Linstedt B A, Heir E, Vardund T, et al. A variation of the amplified-fragment length polymorphism (AFLP) technique using three restriction endonucleases, and assessment of the enzyme combination BglII-MfeI for AFLP analysis of Salmonella enterica subsp. enterica isolates[J]. FEMS Microbioloy Letters, 2000, 189(1): 19-24. doi: 10.1111/j.1574-6968.2000.tb09200.x
    [34]
    James C M, Lesemann S S, Down G J. Modified AFLP analysis method for species with small genomes[J]. Plant Molecular Biol Reporter, 2003, 21(3): 303-307. doi: 10.1007/BF02772806
    [35]
    万春玲, 谭远德. AFLP的一种改进方法[J]. 南京师大学报(自然科学版), 1999, 22(2): 88-91. doi: 10.3969/j.issn.1001-4616.1999.02.018
  • Related Articles

    [1]ZHANG Yuqing, GUO Huayang, ZHANG Nan, LIU Baosuo, ZHU Kecheng, XIAN Lin, ZHU Tengfei, ZHANG Dianchang. Path analysis of partial growth-related traits for wild large yellow croaker (Larimichthys crocea) of different geographical populations[J]. South China Fisheries Science, 2024, 20(3): 112-119. DOI: 10.12131/20230203
    [2]ZHENG Haohao, YANG Xiaoming, ZHU Jiangfeng. Environmental impact mechanism of skipjack tuna fishery in Western and Central Pacific Ocean based on Multi-scale Geographical Weighted Regression Model (MGWR)[J]. South China Fisheries Science, 2023, 19(5): 1-10. DOI: 10.12131/20230014
    [3]LIU Yaqiu, LIU Mingdian, LI Xinhui, LI Jie. Comparative analysis of nutritional composition and energy density of muscle in three geographical populations of Megalobrama terminalis[J]. South China Fisheries Science, 2022, 18(4): 163-169. DOI: 10.12131/20210226
    [4]CAI Yancong, HUANG Zirong, LI Jiajun, XU Youwei, SUN Mingshuai, CHEN Zuozhi, LIU Weida. Stock distribution of a new record species Nemipterus mesoprion in offshore northern South China Sea[J]. South China Fisheries Science, 2020, 16(6): 1-11. DOI: 10.12131/20200064
    [5]CAO Chao, HUANG Shengzhou, YE Lingtong, HE Jian, WANG Jiangyong, WANG Yu. Comparison and geographical distribution of Polydora lingshuiensis and P.websteri[J]. South China Fisheries Science, 2017, 13(1): 33-42. DOI: 10.3969/j.issn.2095-0780.2017.01.005
    [6]NIU Zhikai, LIU Baosuo, ZHANG Dongling, TAN Caigang, ZHANG Bo, CHEN Mingqiang, FAN Sigang, JIANG Song, HUANG Guiju, LI Youning, YU Dahui. Comparative analysis of growth traits and shell-closing strength among hybrid populations from three geographical groups of pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2015, 11(1): 26-32. DOI: 10.3969/j.issn.2095-0780.2015.01.004
    [7]WANG Xu, XU Heng, ZOU Li, DU Xiao, WANG Fengli, ZHENG Wei, HAN Zhiqiang, SHUI Bonian. Morphological variation analysis of three differente geographic populations of Monodonta labio[J]. South China Fisheries Science, 2013, 9(4): 22-27. DOI: 10.3969/j.issn.2095-0780.2013.04.004
    [8]SU Tian-feng, ZHANG Han-hua, WU Jing-feng. Analysis on genetic diversity of four geographical populations of sea moss Gracilaria in the coast of waters south China[J]. South China Fisheries Science, 2005, 1(5): 56-59.
    [9]CHEN Guo-bao, LI Yong-zhen. Composition and distribution of Serranidae in main coral reef waters of South China Sea[J]. South China Fisheries Science, 2005, 1(3): 18-25.
    [10]YANG Mei-lan, LIN Qin, LU Xiao-yu, CAI Wen-gui. Distribution characteristics of suspended substance in the Lingdingyang water of the Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(2): 51-55.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return