YU Lujun, MIAO Zongyu, CAI Lei, WEI Yuanzheng, HUANG Ren, LI Jianjun. Pathogenicity and impact factors of pathogen causing ulcer disease on Mugilogobius chulae[J]. South China Fisheries Science, 2018, 14(5): 45-52. DOI: 10.3969/j.issn.2095-0780.2018.05.006
Citation: YU Lujun, MIAO Zongyu, CAI Lei, WEI Yuanzheng, HUANG Ren, LI Jianjun. Pathogenicity and impact factors of pathogen causing ulcer disease on Mugilogobius chulae[J]. South China Fisheries Science, 2018, 14(5): 45-52. DOI: 10.3969/j.issn.2095-0780.2018.05.006

Pathogenicity and impact factors of pathogen causing ulcer disease on Mugilogobius chulae

More Information
  • Received Date: February 28, 2018
  • Revised Date: April 22, 2018
  • Available Online: December 04, 2018
  • In order to investigate the pathogen and pathogenicity of ulcer disease of Mugilogobius chulae, we isolated the pathogenic bacteria from M.chulae for the artifical infection experiment, physiological and biochemical identification of pathogens and gryB analysis to determine if the environmental factors (temperature, salinity and pH) influence the pathogenicity of isolate strain EtMc1512. The results show that the pathogen was Edwardsiella tarda. The LD50s (lethal dose, 50%) of the isolate strain EtMc1512 to healthy M.chulae and Danio rerio were 57 CFU·ind–1 and 2.0×104 CFU·ind–1, respectively. The virulence-related genes (citC, mukF, esrB, katB, fimA, gadB) had been detected in strain EtMc1512, and the homology of their nucleotide between EtMc1512 and other E.tarda which were registered in GenBank was 99%. Cell degeneration, necrosis and inflammatory cell infiltration occurred with severe lesion in kidney and liver. The cumulative mortalities in high-temperature groups of 25 ℃ and 30 ℃ were significantly higher than those in low-temperature group of 20 ℃ and the control group (P<0.05). The cumulative mortality in low-salinity group of 3 was significantly lower than those in high-salinity groups of 15 and 30 (P<0.05). However, there was no significant difference in the cumulative mortality among different pH groups (6.0, 7.5 and 9.0, P>0.05). The results show that E.tarda is a highly pathogenic pathogen of ulcer disease of M.chulae, and the environmental factors of temperature and salinity affect the virulence of E.tarda significantly.
  • [1]
    李建军, 林忠婷, 陈小曲, 等. 四种重金属离子对诸氏鲻虾虎鱼的单一和联合毒性[J]. 海洋环境科学, 2014, 33(2): 236-241.
    [2]
    GUO Z Q, GAO N, WU Y, et al. The simultaneous uptake of dietary and waterborne Cd in gastrointestinal tracts of marine yellowstripe goby Mugilogobius chulae[J]. Environ Poll, 2017, 223(4): 31-41.
    [3]
    余露军, 蔡磊, 李舸, 等. 诸氏鲻虾虎鱼卵黄蛋白原基因全长cDNA的克隆及表达[J]. 海洋科学, 2016, 40(9): 23-31.
    [4]
    蔡文超, 陈小曲, 李建军, 等. 水基钻井液对诸氏鲻虾虎鱼抗氧化酶的影响[J]. 中国比较医学杂志, 2014, 24(2): 16-19.
    [5]
    陈小曲, 黄韧, 李建军. 诸氏鲻虾虎鱼染色体组型分析[J]. 热带海洋学报, 2013, 32(6): 88-95.
    [6]
    蔡磊, 陈小曲, 郑伟强, 等. 诸氏鲻虾虎鱼多态性微卫星标记的开发及评价[J]. 中国实验动物学报, 2015, 23(1): 57-62.
    [7]
    魏远征, 林忠婷, 李建军, 等. 不同饲料对诸氏鲻虾虎鱼生长和利用效果的影响[J]. 中国比较医学杂志, 2016, 26(1): 29-36.
    [8]
    余露军, 蔡磊, 陈小曲, 等. 诸氏鲻虾虎鱼致病性创伤弧菌的分离与鉴定[J]. 动物医学进展, 2015, 36(9): 51-54.
    [9]
    ÁNGELES E M, ALBERTO C, ELENA C P, et al. Influence of melatonin on the immune system of fish: a review[J]. Int J Mol Sci, 2013, 14(4): 7979-7999.
    [10]
    DOMINGUEZ M, TAKEMURA A, TSUCHIYA M. Effects of changes in environmental factors on the non-specific immune response of Nile tilapia, Oreochromis niloticus L[J]. Aquacult Res, 2005, 36(4): 391-397.
    [11]
    SCHMITZ M, DOUXFILS J, MANDIKI S N, et al. Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection[J]. Fish Shellfish Immunol, 2016, 55: 550-558.
    [12]
    周一平. 用SPSS软件计算新药的LD50[J]. 药学进展, 2003, 27(5): 314-316.
    [13]
    刘春, 李凯彬, 王庆, 等. 斑马鱼迟缓爱德华氏菌的鉴定, 致病性及药物敏感性[J]. 华中农业大学学报, 2013, 32(3): 105-111.
    [14]
    江云, 李寿崧, 王寿昆, 等. 致病性迟钝爱德华氏菌毒力基因的PCR检测[J]. 中国食品学报, 2008, 8(4): 123-129.
    [15]
    QIN L, XU J, WANG Y G. Edwardsiellosis in farmed turbot, Scophthalmus maximus (L.), associated with an unusual variant of Edwardsiella tarda: a clinical, aetiological and histopathological study[J]. J Fish Dis, 2014, 37(2): 103-111.
    [16]
    ZHOU Z, YE X P, LUO Y, et al. Identification and biological characteristics of Edwardsiella tarda isolated from Pelteobagrus fulvidraco[J]. Agric Biotechnol, 2014, 3(5): 42-44.
    [17]
    陈言峰, 周爱国, 陈冠锋, 等. 养殖杂交鳢迟缓爱德华菌的分离鉴定[J]. 南方水产科学, 2014, 10(5): 1-7.
    [18]
    葛艳, 陈怀青, 陆承平. 迟缓爱德华氏菌胞外产物的细胞毒性和动物致病性[J]. 中国兽医学报, 2000, 20(1): 34-37.
    [19]
    ABRAHAM T, MALLICK P, ADIKESAVALU H, et al. Pathology of Edwardsiella tarda infection in African catfish, Clarias gariepinus (Burchell 1822), fingerlings[J]. Arch Polish Fish, 2015, 23(3): 141-148.
    [20]
    许晓芸, 陈锦民, 冯建军, 等. 迟缓爱德华氏菌感染美洲鳗鲡后的组织与超微病理观察[J]. 集美大学学报(自然科学版), 2017, 22(6): 17-23.
    [21]
    MOUSTAFA E, OMAR A, ABDO W. Insight into the virulence-related genes of Edwardsiella tarda isolated from cultured freshwater fish in Egypt[J]. World Vet J, 2016, 6(3): 101-109.
    [22]
    SRINIVASA RAO P S, LIM T M, LEUNG K Y. Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis[J]. Infect Immun, 2003, 71(3): 1343-1351.
    [23]
    GAO Z P, NIE P, LU J F, et al. Type Ⅲ secretion system translocon component EseB forms filaments on and mediates autoaggregation of and biofilm formation by Edwardsiella tarda[J]. Appl Environ Microbiol, 2015, 81(17): 6078-6087.
    [24]
    LIU L Y, NIE P, YU H B, et al. Regulation of Type Ⅲ secretion of translocon and effector proteins by the EsaB/EsaL/EsaM complex in Edwardsiella tarda[J]. Infect Immun, 2017, 85(9): e00317-e00322.
    [25]
    OKUDA J, TAKEUCHI Y, NAKAI T. Type Ⅲ secretion system genes of Edwardsiella tarda associated with intracellular replication and virulence in zebrafish[J]. Dis Aquat Organ, 2014, 111(1): 31-39.
    [26]
    XIAO J, CHEN T, WANG Q, et al. Comparative analysis of the roles of catalases KatB and KatG in the physiological fitness and pathogenesis of fish pathogen Edwardsiella tarda[J]. Lett Appl Microbiol, 2012, 54(5): 425-432.
    [27]
    ZHENG D H, MAI K S, LIU S Q, et al. Effect of temperature and salinity on virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel)[J]. Aquacult Res, 2004, 35(5): 494-500.
    [28]
    谢明媚, 彭士明, 张晨捷, 等. 急性温度胁迫对银鲳幼鱼抗氧化和免疫指标的影响[J]. 海洋渔业, 2015, 37(6): 541-549.
    [29]
    MAKRINOS D L, BOWDEN T J. Natural environmental impacts on teleost immune function[J]. Fish Shellfish Immunol, 2016, 53: 50-57.
    [30]
    MA A J, HUANG Z H, WANG X A. Changes in protein composition of epidermal mucus in turbot Scophthalmus maximus (L.) under high water temperature[J]. Fish Physiol Biochem, 2013, 39(6): 1411-1418.
    [31]
    翟璐, 徐宾铎, 纪毓鹏, 等. 黄河口及其邻近水域夏季鱼类群落空间格局及其与环境因子的关系[J]. 应用生态学报, 2015, 26(9): 2852-2858.
    [32]
    边平江, 邱成功, 徐善良, 等. 盐度对暗纹东方鲀生长、非特异性免疫和抗氧化酶活力的影响[J]. 水生生物学报, 2014, 38(1): 108-114.
    [33]
    陈庆凯. 低盐胁迫对黄姑鱼幼鱼血清免疫和抗氧化性能的影响[J]. 海洋渔业, 2014, 36(6): 516-522.
    [34]
    房子恒, 田相利, 董双林, 等. 不同盐度下半滑舌鳎幼鱼非特异性免疫酶活力分析[J]. 中国海洋大学学报(自然科学版), 2014, 44(5): 46-53.
  • Related Articles

    [1]HU Xiaoliang, WANG Xichang, LI Yulin, WANG Yifen, SHEN Jian. Numerical simulation of temperature distribution during radio frequency tempering of pollack surimi based on dielectric properties[J]. South China Fisheries Science, 2018, 14(5): 95-102. DOI: 10.3969/j.issn.2095-0780.2018.05.012
    [2]LI Jie, YAN Lei, YANG Bingzhong, ZHANG Peng. Numerical simulation on untrammeled settlement process of falling-net[J]. South China Fisheries Science, 2017, 13(4): 105-114. DOI: 10.3969/j.issn.2095-0780.2017.04.013
    [3]DUAN Yafei, HUANG Zhong, LIN Heizhao, DONG Hongbiao, ZHANG Jiasong. Comparative analysis of muscle nutrient composition between floating-cage cultured and pond-cultured Pacific white shrimps (Litopenaeus vannamei)[J]. South China Fisheries Science, 2017, 13(2): 93-100. DOI: 10.3969/j.issn.2095-0780.2017.02.012
    [4]HU Yu, GUO Genxi, HUANG Xiaohua, TAO Qiyou, ZHANG Xiaoming, GU Hengguang. Auto-feeding system for deep-water net cage based on PLC[J]. South China Fisheries Science, 2011, 7(4): 61-68. DOI: 10.3969/j.issn.2095-0780.2011.04.010
    [5]HUANG Xiaohua, GUO Genxi, HU Yu, TAO Qiyou, ZHANG Xiaoming. Numerical simulation of dynamic process of cylinder nets in current[J]. South China Fisheries Science, 2011, 7(3): 56-61. DOI: 10.3969/j.issn.2095-0780.2011.03.010
    [6]HUANG Xiaohua, GUO Genxi, HU Yu, TAO Qiyou. Forces on floating circular collar of net cages subjected to waves[J]. South China Fisheries Science, 2009, 5(4): 36-40. DOI: 10.3969/j.issn.1673-2227.2009.04.007
    [7]HUANG Xiaohua, GUO Genxi, TAO Qiyou, HU Yu. Numerical simulation of the force and deformation of submerged plane nets in current[J]. South China Fisheries Science, 2009, 5(3): 23-29. DOI: 10.3969/j.issn.1673-2227.2009.03.004
    [8]SHUI Bo-nian, GUO Di-fei. Seasonal variation analysis of fouling organisms on offshore cages in Zhoushan[J]. South China Fisheries Science, 2008, 4(4): 36-41.
    [9]WANG Cong, LIN Jun, CHEN Pi-mao, ZHANG Shou-yu. Numerical simulation on water exchange in Daya Bay[J]. South China Fisheries Science, 2008, 4(4): 8-15.
    [10]GUO Genxi. The existing problem and basic countermeasure in the industrialization development of deep-water net cage culture in China[J]. South China Fisheries Science, 2006, 2(1): 66-70.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return