BI Xiaomin, HUANG Guiju, FAN Sigang, ZHU Wenjie, YU Dahui. Optimization of expression conditions for recombinant protein of biomineral gene Pearlin from pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2015, 11(6): 100-106. DOI: 10.3969/j.issn.2095-0780.2015.06.014
Citation: BI Xiaomin, HUANG Guiju, FAN Sigang, ZHU Wenjie, YU Dahui. Optimization of expression conditions for recombinant protein of biomineral gene Pearlin from pearl oyster (Pinctada fucata)[J]. South China Fisheries Science, 2015, 11(6): 100-106. DOI: 10.3969/j.issn.2095-0780.2015.06.014

Optimization of expression conditions for recombinant protein of biomineral gene Pearlin from pearl oyster (Pinctada fucata)

More Information
  • Received Date: December 21, 2014
  • Revised Date: February 02, 2015
  • To obtain high and stable expression recombinant fusion protein of Pearlin, we constructed the recombinant vector by using the open reading frames (ORF) of Pearlin cloned from the mantle tissue of pearl oyster (Pinctada fucata) and optimized the expression conditions. The Pearlin ORF was cloned into the vector pET32a and the plasmids of pET32a-Pearlin were obtained and then transformed into E.coli BL21(DE3). His-tagged insoluble fusion protein was highly expressed and the molecular weight of the fusion protein was about 34.19 kD. We optimized the conditions for IPTG concentrations, induction duration and timing, and temperature and pH of the medium. The results showed that the optimal IPTG concentration ranged from 0.6 mmol·L-1 to 1.4 mmol·L-1 and the best temperature was 37 ℃ when IPTG concentration was 1.0 mmol·L-1 and incubation time was 6 h. The expression levels of recombinant protein did not change significantly when the pH of medium was 6.0, 7.0 and 8.0. When IPTG concentration was kept constant (1.0 mmol·L-1), 4~6 h induction was optimal; when IPTG concentration (1.0 mmol·L-1) and induction duration (6 h) were kept constant, the best starting time for induction was 3~4 h after transformation. Solubility test indicates that fusion protein pET32a-Pearlin was mainly in the form of inclusion body.

  • [1]
    薛桂英, 郭奕惠, 黄桂菊, 等. 合浦珠母贝不同壳基质蛋白基因的表达水平比较[J]. 广东农业科学, 2013(17): 140-141. doi: 10.3969/j.issn.1004-874X.2013.17.043
    [2]
    刘晓军, 李家乐. 养殖珍珠贝贝壳基质蛋白研究进展[J]. 上海海洋大学学报, 2013, 22(2): 200-204. https://www.zhangqiaokeyan.com/academic-journal-cn_detail_thesis/02012103217381.html
    [3]
    王小玉, 喻达辉, 黄桂菊, 等. 合浦珠母贝3个家系的AFLP标记分离与遗传多样性研究[J]. 南方水产, 2007, 3(5): 54-60. doi: 10.3969/j.issn.2095-0780.2007.05.009
    [4]
    郭奕惠, 黄桂菊, 喻达辉. 合浦珠母贝DNA的抽提和RAPD反应体系的优化[J]. 南方水产, 2006, 2(4): 59-64. doi: 10.3969/j.issn.2095-0780.2006.04.010
    [5]
    喻达辉, 王小玉, 郭奕惠, 等. RAPD标记在合浦珠母贝家系F1代的分离方式[J]. 南方水产, 2005, 1(6): 1-7. doi: 10.3969/j.issn.2095-0780.2005.06.001
    [6]
    ISOWA Y, SARASHINA I, DAVIN H E, et al. A comparative study of the shell matrix protein Aspein in Pterioid Bivalves[J]. J Mol Evol, 2012, 75(1/2): 11-18. doi: 10.1007/s00239-012-9514-3
    [7]
    LIU X J, LIU C, CHEN L, et al. A new method to extract matrix proteins directly from the secretion of the mollusk mantle and the role of these proteins in shell biomineralization[J]. Mar Biotechnol, 2011, 13(5): 981-991. doi: 10.1007/s10126-011-9362-y
    [8]
    LIU X J, LIU C, SUN J, et al. Erosion of the prismatic layer by the organic matrix during the formation of the nacre-prism transition layer in the shell of Pinctada fucata (Bivalvia, Mollusca) [J]. Mar Biol, 2011, 56 (9): 869-876. doi: 10.1007/s11434-011-4348-8
    [9]
    SONG X R, WANG X T, LI L, et al. Identification two novel nacrein-like proteins involved in the shell formation of the Pacific oyster Crassostrea gigas[J]. Mol Biol Rep, 2014, 41(7): 4273-4278. doi: 10.1007/s11033-014-3298-z
    [10]
    JOUBERT C, PIQUEMAL D, MARIE B J, et al. Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization[J]. BMC Genomics, 2010, 11: 613. doi: 10.1186/1471-2164-11-613
    [11]
    MARIE B J, ZANELLA I, GUICHARD N, et al. Novel proteins from the calcifying shell matrix of the Pacific oyster Crassostrea gigas[J]. Mar Biotechnol, 2011, 13(6): 1159-1168. doi: 10.1007/s10126-011-9379-2
    [12]
    闫振广. 合浦珠母贝贝壳珍珠层形成机理的研究[D]. 北京: 清华大学, 2008: 1-12. https://cdmd.cnki.com.cn/Article/CDMD-10003-2009083414.htm
    [13]
    YU J, WANG H, DU X D, et al. Dermatopontin, a shell matrix protein gene from pearl oyster Pinctada martensii, participates in nacre formation [J]. BBRC, 2012, 425(3): 679-683. doi: 10.1016/j.bbrc.2012.07.099
    [14]
    ZHANG Y, XIE L P, MENG Q X, et al. A novel matrix protein participating in the nacre framework formation of pearl oyster Pinctada fucata [J]. CBP, 2003, 135(3): 565-573. doi: 10.1016/S1096-4959(03)00138-6
    [15]
    ZHANG L J, HE M X. Quantitative expression of shell matrix protein genes and their correlations with shell traits in the pearl oyster Pinctada fucata[J]. Aquaculture, 2011, 314(1/2/3/4): 73-79. doi: 10.1016/j.aquaculture.2011.01.039
    [16]
    WANG N, KINOSHITA S, RIHO C, et al. Quantitative expression analysis of nacreous shell matrix protein genes in the process of pearl biogenesis[J]. CBP, 2009, 154(3): 346-350. doi: 10.1016/j.cbpb.2009.07.012
    [17]
    ZHANG C, XIE L P, HUANG J, et al. A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata[J]. BBRC, 2006, 344(3): 735-740. doi: 10.1016/j.bbrc.2006.03.179
    [18]
    MIYASHITA T, TAKAGI R, OKUSHIMA M, et al. Complementary DNA cloning and characterization of Pearlin, a new class of matrix protein in the nacreous layer of oyster pearls[J]. Mar Biotechnol, 2000, 2(5): 409-418. doi: 10.1007/PL00021687
    [19]
    MATSUSHIRO A, MIYASHITA T, MIYAMOTO H, et al. Presence of protein complex is prerequisite for aragonite crystallization in the nacreous layer[J]. Mar Biotechnol, 2000, 5(1): 37-44. doi: 10.1007/s10126-002-0048-3
    [20]
    CHECA A. A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca)[J]. Tissue and Cell, 2000, 32(5): 405-416. doi: 10.1054/tice.2000.0129
    [21]
    GREGOIRE C. Topography of the organic components in mother of pearl [J]. JBBC, 1957, 3(5): 797-808. doi: 10.1083/jcb.3.5.797
    [22]
    BLAY C, KOUA M S, VONAU V. Influence of nacre deposition rate on cultured pearl grade and colour in the black-lipped pearl oyster Pinctada margaritifera using farmed donor families[J]. Aquac Int, 2014, 22(2): 937-953. doi: 10.1007/s10499-013-9719-5
    [23]
    INOUE N, ISHIBASHI R, SHIKAWA T, et al. Comparison of expression patterns of shell matrix protein genes in the mantle tissues between high-and low-quality pearl-producing recipients of the pearl oyster, Pinctada fucata[J]. Zool Sci, 2011, 28(1): 32-36. doi: 10.2108/zsj.28.32
    [24]
    INOUE N, ISHIBASHI R, ISHIKAWA T, et al. Can the quality of pearls from the Japanese pearl oyster (Pinctada fucata) be explained by the gene expression patterns of the major shell matrix proteins in the pearl sac [J]. Mar Biotechnol, 2011, 13(1): 48-55. doi: 10.1007/s10126-010-9267-1
    [25]
    龙敏明, 黄桂菊, 邹记兴, 等. 育珠对合浦珠母贝N19和Prismalin-14基因表达水平的影响[J]. 南方水产科学, 2013, 9(5): 58-63. doi: 10.3969/j.issn.2095-0780.2013.05.010
    [26]
    BERLEC A, TOMPA G, SLAPAR N, et al. Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis[J]. LAM, 2008, 46(2): 227-231. doi: 10.1111/j.1472-765X.2007.02297.x
    [27]
    金晶, 蔡亦红, 类延花, 等. HCMVpp65截短蛋白原核表达条件优化[J]. 微生物学杂志, 2005, 25(3): 28-32. doi: 10.3969/j.issn.1005-7021.2005.03.008
    [28]
    邹平. 重组包涵体蛋白质复性[J]. 厦门科技, 2005(5): 42-45.
    [29]
    王晓霞. 绵羊痘病毒甘肃株两种糖蛋白基因的克隆表达及间接ELISA诊断方法的建立[D]. 杨凌: 西北农林科技大学, 2009: 35-36.
    [30]
    祝珍珍. 山羊△FosB基因的原核表达、多克隆抗体制备及组织差异表达检测[D]. 杨凌: 西北农林科技大学, 2010: 27.
  • Related Articles

    [1]ZHANG Wenwei, HUANG Zhong, DUAN Yafei, LIN Heizhao, JIANG Shigui, HUANG Jianhua. Effects of different disinfectants on water quality and microbial community structure of Litopenaeus vannamei[J]. South China Fisheries Science, 2021, 17(2): 1-10. DOI: 10.12131/20200236
    [2]ZHANG Jiachen, LIU Jianyong, YUAN Ruipeng, HU Zhiguo. Effect of stocking density on growth and survival of inbred and hybrid offspring of Litopenaeus vannamei[J]. South China Fisheries Science, 2015, 11(4): 53-58. DOI: 10.3969/j.issn.2095-0780.2015.04.008
    [3]LI Guolie, WANG Yuan, FANG Wenhong, SHEN Jinyu, ZHOU Junfang. Pharmacokinetics and bioavailability of sarafloxacin hydrochloride in Litopenaeus vannamei[J]. South China Fisheries Science, 2014, 10(1): 50-56. DOI: 10.3969/j.issn.2095-0780.2014.01.008
    [4]ZHANG Huajun, LI Zhuojia, ZHANG Jiasong, ZHANG Xiaoyang, CAO Yucheng, WEN Guoliang, CHENG Kaimin. Effects of stocking density on immune parameters and growth of juvenile Litopenaeus vannamei[J]. South China Fisheries Science, 2012, 8(4): 43-48. DOI: 10.3969/j.issn.2095-0780.2012.04.007
    [5]QIU Zefeng, ZHANG Liang, ZENG Weicai, JIAN Zhuoying, GAO Jialong, LIU Shucheng. Effect of frozen storage on muscle texture of Litopenaeus vannamei[J]. South China Fisheries Science, 2011, 7(5): 63-67. DOI: 10.3969/j.issn.2095-0780.2011.05.010
    [6]XIE Xiaoyong, SU Tianfeng, CHEN Wen, ZHANG Zhi, YAN Yuanyi, JIANG Shigui. Analysis on genetic diversity of six cultured stocks of Litopenaeus vannamei[J]. South China Fisheries Science, 2008, 4(6): 42-49.
    [7]LI Chunhou, QIN Honggui, JIA Xiaoping, TIAN Lixia. The effect of density on energy conversion efficiency of juvenile shrimp Litopenaeus vannamei[J]. South China Fisheries Science, 2006, 2(1): 30-33.
    [8]LIN Heizhe, YE Le, CHEN Yanjun, ZHOU Jinghui, LI Zhuojia, WU Kaichang. Effect of feed additive Stafac-500 on the growth and feed conversion for juvenile white shrimp, Litopenaeus vannamei[J]. South China Fisheries Science, 2005, 1(6): 63-65.
    [9]YE Le, LIN Hei-zhe, LI Zhuo-jia, WU Kai-chang, WEN Guo-liang, MA Zhi-ming, ZHU Chang-fu. The effect of feeding frequency on growth of Litopenaeus vannamei (Boone) and water quality[J]. South China Fisheries Science, 2005, 1(4): 55-59.
    [10]LI Zhuo-jia, LIN Liang, YANG Ying-ying, LIN Xiao-tao. Effect of Bacillus commercial probiotic on intestinal microflora of white shrimp, Litopenaeus vannamei[J]. South China Fisheries Science, 2005, 1(3): 54-59.
  • Cited by

    Periodical cited type(8)

    1. 朱轩仪,郑晓婷,邢逸夫,黄建华,董宏标,张家松. 三丁酸甘油酯提高凡纳滨对虾鳃组织抗周期性高温胁迫能力的研究. 南方水产科学. 2024(03): 66-75 . 本站查看
    2. 胡晓娟,杨铿,文国樑,苏浩昌,许云娜,徐创文,徐煜,徐武杰,曹煜成. 溶藻菌CZBC1在氯化物型盐碱水中对铜绿微囊藻的溶藻效果研究. 南方水产科学. 2024(05): 169-175 . 本站查看
    3. 江昀珈,胡晓娟,杨铿,曹煜成,许云娜,徐创文,张建设,文国樑. 蜡样芽孢杆菌TC-1对硫酸盐型盐碱水的生长适应性及其对微囊藻的溶藻效果. 中国水产科学. 2024(08): 954-965 .
    4. 曹煜成,孙志伟,徐煜,胡晓娟,苏浩昌,徐武杰,文国樑,鲁敏,余招龙. 三种微藻的生物量与其细胞氮磷碳的相互关系. 生态科学. 2022(04): 204-211 .
    5. 鲁敏,曹煜成,胡晓娟,许云娜,孙志伟,张建设,文国樑. 钝顶螺旋藻SP1(Spirulina platensis)对集约化养殖尾水氮磷的去除效果. 生态科学. 2021(02): 125-132 .
    6. 陈加雄,李伟滨,陈伟洲,马庆涛,陈楷亮. 封闭式虾池水体环境因子变化及浮游微藻优势种群演替规律. 湖北农业科学. 2018(11): 29-31+45 .
    7. 曹煜成,徐煜,黄小帅,胡晓娟,李卓佳,李凡,陈勇贵,文国樑. 铜绿微囊藻对WSSV潜伏感染对虾的致死效应. 南方农业学报. 2018(08): 1648-1653 .
    8. Jiaxiong CHEN,Weibin LI,Weizhou CHEN,Qingtao MA,Kailiang CHEN. Variation of Environmental Factors and Dominant Population Succession of Microalgae Planktonic in Closed Shrimp Pond. Agricultural Biotechnology. 2018(06): 188-191 .

    Other cited types(2)

Catalog

    Article views (3521) PDF downloads (1435) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return