LI Xuguang, QI Zhanhui, LIN Lin, ZHANG Zhe, HUANG Honghui. Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing[J]. South China Fisheries Science, 2015, 11(6): 1-8. DOI: 10.3969/j.issn.2095-0780.2015.06.001
Citation: LI Xuguang, QI Zhanhui, LIN Lin, ZHANG Zhe, HUANG Honghui. Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing[J]. South China Fisheries Science, 2015, 11(6): 1-8. DOI: 10.3969/j.issn.2095-0780.2015.06.001

Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing

More Information
  • Received Date: January 25, 2015
  • Revised Date: February 13, 2015
  • We analyzed the archaeal community in tropical aquaculture farm sediments in Dapeng Cove, located in the southwest of Daya Bay, southern China. Sediment cores samples (5 cm and 30 cm in depth) were collected by a core-sampler in summer (August, 2014). Results show that the abundance of archaea in deep layers was higher than that in surface layer. The dominant species in surface and deep layers were Class Thermoplasma, Phylum Euryarchaeota, and Class MCG (Miscellaneous Crenarchaeotic Group), Phylum Crenarchaeota. In general, the abundance of Crenarchaeota was higher than that of Euryarchaeota. The abundance of predominant species was higher in aquaculture farms than in non-aquaculture area. The difference in archaeal community structure between surface and deep layers was more significant in aquaculture farms than that in non-aquaculture area. Results indicate that the archaeal community structure might be affected by intensive aquaculture activities, whose underlying mechanism needs further study.

  • [1]
    WOESE C R, KANDLER O, WHEELIS M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya [J]. Proc Natl Acad Sci, 1990, 87(12): 4576-4579. doi: 10.1073/pnas.87.12.4576
    [2]
    XIONG J, YE X, WANG K, et al. Biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea [J]. Appl Environ Microb, 2014, 80(6): 1919-1925. doi: 10.1128/AEM.03731-13
    [3]
    ZHANG J, YANG Y, ZHAO L, et al. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes [J/OL]. Appl Environ Microb, 2014. DOI: 10.1007/s00253-014-6262-x.
    [4]
    DE GANNES V, EUDOXIE G, HICKEY W J. Impacts of edaphic factors on communities of ammonia-oxidizing archaea, ammonia-oxidizing bacteria and nitrification in tropical soils [J]. PloS ONE, 2014, 9(2): e89568. doi: 10.1371/journal.pone.0089568
    [5]
    郑有坤, 王宪斌, 辜运富, 等. 若尔盖高原湿地土壤氨氧化古菌的多样性[J]. 微生物学报, 2014, 54(9): 1090-1096. doi: 10.13343/j.cnki.wsxb.2014.09.014
    [6]
    BEMAN J M. Activity, abundance, and diversity of nitrifying archaea and denitrifying bacteria in sediments of a subtropical estuary: Bahía del Tóbari, Mexico [J]. Est Coast, 2014, 37(6): 1343-1352. doi: 10.1007/s12237-013-9716-y
    [7]
    XU M, ZHANG Q, XIA C, et al. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments [J]. ISME J, 2014, 8(9): 1932-1944. doi: 10.1038/ismej.2014.42
    [8]
    FRANCIS C A, BEMAN J M, KUYPERS M M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation [J]. ISME J, 2007, 1(1): 19-27. doi: 10.1038/ismej.2007.8
    [9]
    ABELL G, ROSS D J, KEANE J P, et al. Nitrifying and denitrifying microbial communities and their relationship to nutrient fluxes and sediment geochemistry in the Derwent Estuary, Tasmania [J]. Aquat Microb Ecol, 2013, 70: 63-75. doi: 10.3354/ame01642
    [10]
    KATO S, IKEHATA K, SHIBUYA T, et al. Potential for biogeochemical cycling of sulfur, iron and carbon within massive sulfide deposits below the seafloor [J]. Environ Microbiol, 2014. DOI: 10.1111/1462-2920.12648.
    [11]
    DELONG E F. Archaea in coastal marine environments [J]. Proc Natl Acad Sci, 1992, 89(12): 5685-5689. doi: 10.1073/pnas.89.12.5685
    [12]
    陈明明, 王少璞, 韦梦, 等. 象山港网箱养殖区沉积物的古菌空间分布[J]. 生态学报, 2014, 34(14): 4099-4106. doi: 10.5846/stxb201212041745
    [13]
    MCKINDSEY C W, LECUONA M, HUOT M, et al. Biodeposit production and benthic loading by farmed mussels and associated tunicate epifauna in Prince Edward Island [J]. Aquaculture, 2009, 295(1): 44-51. doi: 10.3969/j.issn.1004-2091.2009.01.022
    [14]
    BRAGER L M, CRANFORD P J, GRANT J, et al. Spatial distribution of suspended particulate wastes at open-water Atlantic salmon and sablefish aquaculture farms in Canada [J]. Aquac Environ Interact, 2015, 6: 135-149. doi: 10.3354/aei00120
    [15]
    GIOVANNONI S J, STINGL U. Molecular diversity and ecology of microbial plankton [J]. Nature, 2005, 437(7057): 343-348. doi: 10.1038/nature04158
    [16]
    秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011, 51(4): 445-457. doi: 10.1007/s11518-011-5154-1
    [17]
    王肇鼎, 彭云辉, 孙丽华, 等. 大鹏澳网箱养鱼水体自身污染及富营养化研究[J]. 海洋科学, 2003, 27(2): 77-81. doi: 10.3969/j.issn.1000-3096.2003.02.022
    [18]
    FALKOWSKI P G, FENCHEL T, DELONG E F. The microbial engines that drive Earth′s biogeochemical cycles [J]. Science, 2008, 320(5879): 1034-1039. doi: 10.1126/science.1153213
    [19]
    王剑飞, 萨仁高娃, 李铁刚, 等. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 767-774. doi: 10.11867/j.issn.1001-8166.2010.07.0766
    [20]
    VETRIANI C, JANNASCH H W, MACGREGOR B J, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments [J]. Appl Environ Microb, 1999, 65(10): 4375-4384. doi: 10.1128/AEM.65.10.4375-4384.1999
    [21]
    KARNER M B, DELONG E F, KARL D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean [J]. Nature, 2001, 409(6819): 507-510. doi: 10.1038/35054051
    [22]
    SAHM K, BERNINGER U. Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svalbard, Arctic Ocean) [J]. Mar Ecol Prog Ser, 1998, 165: 71-80. doi: 10.3354/meps165071
    [23]
    HE J Z, SHEN J P, ZHANG L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices [J]. Environ Microbiol, 2007, 9(9): 2364-2374. doi: 10.1111/j.1462-2920.2007.01358.x
    [24]
    NEDWELL D B. The input and mineralization of organic carbon in anaerobic aquatic sediments [M]//MARSHALL K C. Advances in microbial ecology. New York: Plenum Press, 1984: 93-131. doi: 10.1007/978-1-4684-8989-7_3
    [25]
    HOU J, CAO X, SONG C, et al. Predominance of ammonia-oxidizing archaea and nirK-gene-bearing denitrifiers among ammonia-oxidizing and denitrifying populations in sediments of a large urban eutrophic lake (Lake Donghu) [J]. Can J Microbiol, 2013, 59(7): 456-464. doi: 10.1139/cjm-2013-0083
    [26]
    WESSÉN E, NYBERG K, JANSSON J K, et al. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management [J]. Appl Soil Ecol, 2010, 45(3): 193-200. doi: 10.1016/j.apsoil.2010.04.003
    [27]
    HERRMANN M, SAUNDERS A M, SCHRAMM A. Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments [J]. Appl Environ Microbiol, 2009, 75(10): 3127-3136. doi: 10.1128/AEM.02806-08
    [28]
    VALENTINE D L. Adaptations to energy stress dictate the ecology and evolution of the archaea [J]. Nat Rev Microbiol, 2007, 5(4): 316-323. doi: 10.1038/nrmicro1619
    [29]
    BOUCHET V M P, SAURIAU P G. Influence of oyster culture practices and environmental conditions on the ecological status of intertidal mudflats in the Pertuis Charentais (SW France): a multi-index approach [J]. Mar Pollut Bull, 2008, 56(11): 1898-1912. doi: 10.1016/j.marpolbul.2008.07.010
    [30]
    罗昭林, 朱长波, 郭永坚, 等. 流沙湾表层沉积物中碳, 氮, 磷的分布特征和污染评价[J]. 南方水产科学, 2014, 10(3): 1-8. doi: 10.3969/j.issn.2095-0780.2014.03.001
    [31]
    LIPP J S, MORONO Y, INAGAKI F, et al. Significant contribution of archaea to extant biomass in marine subsurface sediments [J]. Nature, 2008, 454(7207): 991-994. doi: 10.1038/nature07174
    [32]
    KOIZUMI Y, TAKII S, FUKUI M. Depth-related change in archaeal community structure in a freshwater lake sediment as determined with denaturing gradient gel electrophoresis of amplified 16S rRNA genes and reversely transcribed rRNA fragments[J]. FEMS Microbiol Ecol, 2004, 48(2): 285-292. doi: 10.1016/j.femsec.2004.02.013
    [33]
    LIU Y, ZHANG J, ZHANG X, et al. Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland [J]. Appl Microbiol Biotechnol, 2014, 98(12): 5697-7072. doi: 10.1007/s00253-014-5651-5
    [34]
    YE W, LIU X, LIN S, et al. The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu [J]. FEMS Microbiol Ecol, 2009, 70(2): 263-276. doi: 10.1111/j.1574-6941.2009.00761.x
    [35]
    RUSCH A, HANNIDES A K, GAIDOS E. Diverse communities of active Bacteria and Archaea along oxygen gradients in coral reef sediments [J]. Coral Reefs, 2009, 28(1): 15-26. doi: 10.1007/s00338-008-0427-y
    [36]
    TESKE A, SØRENSEN K B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? [J]. ISME J, 2007, 2(1): 3-18.
  • Cited by

    Periodical cited type(4)

    1. 赖胜,杨慧林,陈美玲,龙馨怡,刘淑丽,简敏菲. 鄱阳湖南矶湿地苔草植被根际土壤微生物群落结构分析. 江西师范大学学报(自然科学版). 2023(01): 82-90 .
    2. 冯敬宾,任春华,江晓,严岩,董俊德,胡超群. 大亚湾夏季表层浮游细菌生物量分布与环境变量的关系. 海洋湖沼通报. 2019(02): 81-89 .
    3. 关统伟,向慧平,王鹏昊,邓奥宇,董丹,赵顺先,张习超. 基于高通量测序的郫县豆瓣不同发酵期细菌群落结构及其动态演替. 食品科学. 2018(04): 106-111 .
    4. 宋宇. 草莓不同生长时期土壤微生物群落结构变化. 贵州农业科学. 2018(08): 59-62 .

    Other cited types(3)

Catalog

    Article views (3516) PDF downloads (1521) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return