Citation: | CUI Jiaming, LIU Changgen, ZHANG Meiling, WANG Xuanzhi, TIAN Yu, XU Xiaofu, SUN Jian. Analysis of impact of typhoon track and intensity on cage aquaculturearea in sea area of Maniao Bay[J]. South China Fisheries Science. DOI: 10.12131/20250009 |
Extreme waves and currents generated by the passage of typhoons have an important impact on the cage culture area. In order to assess the degree of hazard of typhoons with different paths and intensities on the large-scale aquaculture areas with in-cell nets in Maniao Bay, Hainan, we constructed a wave-current coupling model based on the Holland wind field model and the Delft3D software, and the model was validated by using observational data. The typhoon paths were categorized into four types based on the paths and landfall locations of the historical typhoons, and "Rammasun", "Kompasu", "Vongfong" and "Ted" were selected as the representative typhoons of the four types of paths. Seventy-two typhoon processes were reconstructed by translating and changing the typhoon intensity, and we simulated the process of change in the wave current field during the typhoon, obtained the statistics of different paths and intensity of the typhoon transit process of the maximum effective wave height and current velocity in the Maniao Bay aquaculture area, which were used as an assessment of the strength of the influence of the Maniao Bay nets aquaculture area, the strength of the impacts of the factors. Moreover, we analyzed theimpacts of different paths and typhoon intensities on the net box aquaculture area, and proposed the range of warning paths during the transit of typhoons of different intensities. The results show that among the four types of typhoon paths, the first type of typhoon paths had the widest and greatest impacts on the net-pen aquaculture area, in which the maximum effective wave height in the net-pen aquaculture area under the R4 path was higher than 5.5 m, and the maximum current velocity was more than 1.5 m·s−1 under the 'super typhoon' category, which severely affected the aquaculture area; the second and third types of typhoon paths had the greatest impacts on the net-pen aquaculture area. Most of the paths of Category II and III typhoons had less moderate impacts on the net-pen culture area; and the paths of Category IV typhoons had basically no impacts on the net-pen culture area under the intensity of each typhoon.
[1] |
赵广生, 牛小静. 海南岛历史风暴潮模拟和灾害风险评估[J]. 水动力学研究与进展A辑, 2022, 37(6): 831-836.
|
[2] |
SHI X W, ZHENG S X, LIU Q, et al. Research on numerical simulation of typhoon waves with different return periods in nearshore areas: case study of Guishan island waters in Guangdong province, China[J]. Stoch Environ Res Risk Assess, 2021, 35: 1771-1781. doi: 10.1007/s00477-020-01960-4
|
[3] |
姜雨青, 张俊波, 国志兴, 等. 我国沿海渔业养殖设施空间分布与台风影响关联性研究[J]. 海洋湖沼通报, 2023, 45(1): 183-192.
|
[4] |
石振强. 深水网箱浮圈水动力特性理论及试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2015: 1-2.
|
[5] |
黄小华, 郭根喜, 陶启友, 等. HDPE圆形重力式网箱受力变形特性的数值模拟[J]. 南方水产科学, 2013, 9(5): 126-131.
|
[6] |
刘春宏. 海水网箱养殖区周围流场特性研究[D]. 天津: 天津大学, 2020: 34-35.
|
[7] |
姜雨青. 台风对我国沿海设施渔业影响的关联性及灾害评估[D]. 上海: 上海海洋大学, 2021: 53-55.
|
[8] |
黄滨, 关长涛, 崔勇, 等. 台风“米雷”对山东网箱养殖业灾害性影响的调查与技术解析[J]. 渔业现代化, 2011, 38(4): 17-21.
|
[9] |
张润川. 台风灾害链网络构建及其演化特征研究[D]. 福州: 福建师范大学, 2023: 34-44.
|
[10] |
吴亚男, 左军成, 吕晓凤, 等. 舟山海域风暴潮增水数值分析: 台风“灿鸿”为例[J]. 海洋湖沼通报, 2017(6): 38-45.
|
[11] |
原楠, 陈新平, 陈学恩, 等. 罗源湾海域台风风暴潮数值模拟研究[J]. 海洋通报, 2019, 38(1): 20-30.
|
[12] |
罗志发, 黄本胜, 邱静, 等. 粤港澳大湾区风暴潮时空分布特征及影响因素[J]. 水资源保护, 2022, 38(3): 72-79,153.
|
[13] |
BI C, ZHAO Y, SUN X, et al. An efficient artificial neural network model to predict the structural failure of high-density polyethylene offshore net cages in typhoon waves[J]. Ocean Engin, 2020, 196: 106793. doi: 10.1016/j.oceaneng.2019.106793
|
[14] |
ZHANG Y, GUO H, LIU S, et al. Fatigue vulnerability of sea cage to storm wave loads[J]. J Mar Sci Technol, 2022, 28(1): 153-164.
|
[15] |
LI L, FU S, XU Y. Nonlinear hydro-elastic analysis of an aquaculture fish cage in irregular waves[J]. Mar Struc, 2013, 34: 56-73. doi: 10.1016/j.marstruc.2013.08.002
|
[16] |
YIN C, HUANG H, WANG D, et al. The characteristics of storm wave behavior and its effect on cage cultureusing the ADCIRC+SWAN model in Houshui Bay, China[J]. J Ocean Univ China, 2020, 19(2): 307-319. doi: 10.1007/s11802-020-3941-3
|
[17] |
孙熊雄. 基于机器学习的重力式深水网箱受灾风险评估分析研究[D]. 大连: 大连理工大学, 2019: 26-31.
|
[18] |
刘圣聪, 黄六一, 倪益, 等. 水下圆形重力式网箱缆绳张力对波、流的响应特性[J]. 水产学报, 2019, 43(6): 1518-1526.
|
[19] |
孟范兵. 波流作用下深水重力式网箱水动力特性研究[D]. 大连理工大学, 2014: 44-53.
|
[20] |
黄婉茹, 郭敬, 谭骏, 等. 风暴潮灾害承灾体风险预警技术研究[J]. 自然灾害学报, 2023, 32(4): 85-93.
|
[21] |
于松辰. 波流作用下重力式网箱动力响应研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 1-3.
|
[22] |
朱磊, 刘会欣. 基于Delft3D模型的风暴潮增减水模拟研究: “9711”号台风为例[J]. 海洋湖沼通报, 2018(5): 1-10.
|
[23] |
孙志林, 王辰, 钟汕虹, 等. 浪潮耦合的舟山渔港台风暴潮数值模拟[J]. 海洋通报, 2019, 38(2): 150-158. doi: 10.11840/j.issn.1001-6392.2019.02.004
|
[24] |
HU K, MESELHE E, RHODE R, et al. The impact of levee openings on storm surge: a numerical analysis in Coastal Louisiana[J]. Appl Sci, 2022, 12(21): 10884. doi: 10.3390/app122110884
|
[25] |
MCLAUGHLIN C, LAW B, MULLIGAN R. Modeling surface waves and tide-surge interactions leading to enhanced total water levels in a macrotidal bay[J]. Coast Engin J, 2022, 64(1): 24-41. doi: 10.1080/21664250.2021.1965417
|
[26] |
FUJITA T. Pressure distribution within typhoon[J]. Geophys Mag, 1952, 23: 437-451.
|
[27] |
MYERS V A. Maximum hurricane winds[J]. Bull Amer Meteorol Soc, 1957, 38: 227-228.
|
[28] |
JELESNIANSKI C P. A numerical calculation of storm tidesinduced by a tropical storm impinging on a continental shelf[J]. Mon Weather Rev, 1965, 93(6): 343-358. doi: 10.1175/1520-0493(1993)093<0343:ANCOS>2.3.CO;2
|
[29] |
HOLLAND G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Mon Weather Rev, 1980, 108(8): 1212-1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
|
[30] |
VICKERY P J, SKERLJ P F, STECKLEY A C, et al. Hurricane wind field model for use in hurricane simulations[J]. J Struct Eng, 2000, 126(10): 1203-1221. doi: 10.1061/(ASCE)0733-9445(2000)126:10(1203)
|
[31] |
WILLOUGHBY H E, RAHN M E. Parametric representation of the primary hurricane vortex. part I: observations and evaluation of the Holland(1980) model[J]. Mon Weather Rev, 2004, 132(12): 3033-3048. doi: 10.1175/MWR2831.1
|
[32] |
MING Y, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. J Atmos Ocean Technol, 2014, 31(2): 287-301. doi: 10.1175/JTECH-D-12-00119.1
|
[33] |
LU X, YU H, YING M, et al. Western north pacific tropical cyclone database created by the China meteorological administration[J]. Adv Atmos Sci, 2021, 38(4): 1-10.
|
[34] |
PHILLIPS N A. A coordinate system having some special advantages for numerical forecasting[J]. J Meteorol Res, 1957, 14: 184-185. doi: 10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2
|
[35] |
BOOIJ N, RIS R C, HOLTHUIJSEN L H. A third-generation wave model for coastal regions 1. Model description and validation[J]. J Geophy Res Atmos, 1999, 104(4): 7649-7666.
|
[36] |
WU G, SHI F, KIRBY J T, et al. Modeling wave effects on storm surge and coastal inundation[J]. Coast Engin, 2018, 140: 371-382. doi: 10.1016/j.coastaleng.2018.08.011
|
[37] |
徐亚男. 风暴潮与波浪耦合数值预报模型的研究[D]. 天津: 天津大学, 2012: 26-27.
|
[38] |
PINDSOO K, SOOMERE T. Contribution of wave set-up into the total water level in the Tallinn area[J]. Proc Est Acad Sci, 2015, 64(3): 338-348. doi: 10.3176/proc.2015.3S.03
|
[39] |
薛鸿超, 顾家龙, 任汝述. 海岸动力学[M]. 北京: 人民交通出版社, 1980: 129-167.
|
[40] |
BROWN M J, WOLF J. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress[J]. Cont Shelf Res, 2009, 29(10): 1329-1342. doi: 10.1016/j.csr.2009.03.004
|
[41] |
黄山. 琼州海峡风暴潮数值模拟与不同台风路径对增水的影响研究[D]. 广州: 华南理工大学, 2016: 31-32.
|
[42] |
石青. 近岸台风浪及植被水流环境中的风浪数值模拟研究[D]. 大连: 大连理工大学, 2020: 39-42.
|
[43] |
尹超. 海南岛近海热带气旋引起的台风浪风险评估研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2020: 43-45.
|