Citation: | WANG Xiaomeng, LIU Huang, ZHANG Chenglin, XU Jincheng. Study on large yellow croaker's pellet feed behavior using acoustic signals[J]. South China Fisheries Science. DOI: 10.12131/20250002 |
In recent years, China has achieved remarkable achievement in deep-sea aquaculture of large yellow croaker (Larimichthys crocea), not only in terms of production, but also in terms of quality. Nevertheless, feeding operations are affected by natural calamities such as typhoons and powerful ocean currents. Therefore, to further improve the technological development of L. crocea culture in the deep sea, we used the fish with an initial body mass of (122.62±11.08) g and a body length of (17.9±1.04) cm as samples. Then we applied an underwater acoustic measurement system (Bandwidth of 20 Hz−20 kHz) to capture the underwater sound and observe the behavioral responses of the fish. The results indicate that the feeding sound of the fish could be distinctly classified into two types: pure swallowing and swallowing accompanied by chewing. Both swallowing and chewing produce sound mainly within the frequency of 6 Hz−13 kHz. Prior to feeding, the acoustic signals emitted by the fish were relatively sparse. However, when feeding began, the number of acoustic signals increased significantly. In a single feeding cycle, an individual fish exhibited 4−7 feeding behaviors, with pure swallowing being relatively infrequent. Swallowing was usually accompanied by 1−2 pulsed acoustic signals. Single pulses had a shorter duration, while double pulses had a longer one. The duration of these signals ranged from 0.05 to 0.25 sec, and the average sound pressure level generated was approximately (74.51±3.91) dB. When chewing, the fish most commonly produced 5−7 chews, with the chewing intensity gradually decreasing from (73.27±2.62) to (55.82±1.43) dB. Furthermore, as the number of feeding behaviors increased, the foraging duration of the fish also extended significantly, displaying a linear positive correlation.
[1] |
侯娟, 周为峰, 王鲁民, 等. 中国深远海养殖潜力的空间分析[J]. 资源科学, 2020, 42(7): 1325-1337. doi: 10.18402/resci.2020.07.09
|
[2] |
张琳桓, 张青亮, 孟广玮. 基于可移动式养殖工船的新型深远海养殖产业链分析[J]. 船舶工程, 2020, 42(S02): 40-44.
|
[3] |
徐皓, 刘晃, 徐琰斐. 我国深远海养殖发展现状与展望[J]. 中国水产, 2021(6): 36-39.
|
[4] |
鲍旭腾, 谌志新, 崔铭超, 等. 中国深远海养殖装备发展探议及思考[J]. 渔业现代化, 2022, 49(5): 8-14.
|
[5] |
崔铭超, 金娇辉, 黄温赟. 养殖工船系统构建与总体技术探讨[J]. 渔业现代化, 2019, 46(2): 61-66. doi: 10.3969/j.issn.1007-9580.2019.02.010
|
[6] |
崔铭超, 鲍旭腾, 王庆伟. 我国深远海养殖设施装备发展研究[J]. 船舶工程, 2021, 43(4): N21-N28.
|
[7] |
魏翀, 张宇, 张赛, 等. 网箱养殖大黄鱼合成声信号特性研究[J]. 声学学报, 2013, 38(3): 300-305.
|
[8] |
PEIXOTO S, SOARES R, DAVIS D A. An acoustic based approach to evaluate the effect of different diet lengths on feeding behavior of Litopenaeus vannamei[J]. Aquac Eng, 2020, 91: 102114. doi: 10.1016/j.aquaeng.2020.102114
|
[9] |
ZHOU C, XU D M, LIN K, et al. Intelligent feeding control methods in aquaculture with an emphasis on fish: a review[J]. Rev Aquac, 2018, 10(4): 975-993. doi: 10.1111/raq.12218
|
[10] |
WEI M C, LIN Y T, CHEN K Y, et al. Study on feeding activity of Litopenaeus vannamei based on passive acoustic detection[J]. IEEE Access, 2020, 8: 156654-156662. doi: 10.1109/ACCESS.2020.3019529
|
[11] |
MALLEKH R, LAGARDERE J, ENEAU J, et al. An acoustic detector of turbot feeding activity[J]. Aquaculture, 2003, 221(1/2/3/4): 481-489.
|
[12] |
杨卫, 周丹丹. 我国大黄鱼产业的集聚水平研究[J]. 海洋开发与管理, 2022, 39(10): 26-33.
|
[13] |
黄文超, 崔铭超, 黄温赟. 10万吨级养殖工船养殖舱水体噪声数值计算[J]. 船舶工程, 2022, 44(S01): 256-262.
|
[14] |
姜旭阳, 赵晓霞, 张琳桓. 养殖工船鱼产品加工系统功能需求及发展[J]. 船舶工程, 2020, 42(S02): 86-89.
|
[15] |
崔铭超, 赵雨. 深远海养殖工船科技创新与高质量发展[J]. 船舶工程, 2023, 45(5): N10-N14.
|
[16] |
徐皓, 崔铭超, 刘晃. 中国深远海养殖的技术经济分析[J]. 船舶工程, 2024, 46(5): 28-39.
|
[17] |
邹国华, 宋炜, 谢正丽. 大黄鱼深远海大型围栏养殖技术[J]. 中国水产, 2021(6): 57-60.
|
[18] |
LIU G, YE Z Y, LIU D Z, et al. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems[J]. Fish Shellfish Immunol, 2018, 81: 416-422. doi: 10.1016/j.fsi.2018.07.047
|
[19] |
PARMENTIER E, LAGARDÈRE J P, BRAQUEGNIER J B, et al. Sound production mechanism in carapid fish: first example with a slow sonic muscle[J]. J Exp Biol, 2006, 209(15): 2952-2960. doi: 10.1242/jeb.02350
|
[20] |
齐孟鹗, 张思照, 朱鉴平. 大黄鱼噪声谱分析[J]. 海洋湖沼通报, 1979(1): 59-64.
|
[21] |
许兰英, 齐孟鹗. 黄、渤海两种鱼噪声谱的水下观测[J]. 海洋科学, 1999(4): 13-14. doi: 10.3969/j.issn.1000-3096.1999.04.006
|
[22] |
殷雷明, 黄洪亮, 张旭光, 等. 网箱养殖大黄鱼水下声音与行为反应[J]. 海洋渔业, 2017, 39(1): 92-99. doi: 10.3969/j.issn.1004-2490.2017.01.011
|
[23] |
QI R Y, LIU H, LIU S J. Effects of different culture densities on the acoustic characteristics of micropterus salmoide feeding[J]. Fishes, 2023, 8(3): 126. doi: 10.3390/fishes8030126
|
[24] |
余友斌, 黄温赟, 崔铭超. 养殖密度对大黄鱼生长、血清生化、营养成分、消化酶和代谢酶活力的影响[J]. 渔业现代化, 2023, 50(3): 64-71. doi: 10.3969/j.issn.1007-9580.2023.03.008
|
[25] |
CHEN S X, SU Y Q, HONG W S. Aquaculture of the large yellow croaker[M]//GUI J F, TANG Q S, LI Z J, et al. Aquaculture in China: success stories and modern trends. Hoboken: John Wiley & Sons Ltd, 2018: 297-308.
|
[26] |
LAGARDÈRE J, MALLEKH R, MARIANI A. Acoustic characteristics of two feeding modes used by brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss) and turbot (Scophthalmus maximus)[J]. Aquaculture, 2004, 240(1/2/3/4): 607-616.
|
[27] |
MULLER M, OSSE J, VERHAGEN J. A quantitative hydrodynamical model of suction feeding in fish[J]. J Theor Biol, 1982, 95(1): 49-79. doi: 10.1016/0022-5193(82)90287-9
|
[28] |
汤涛林, 唐荣, 刘世晶, 等. 罗非鱼声控投饵方法[J]. 渔业科学进展, 2014, 35(3): 40-43. doi: 10.11758/yykxjz.20140306
|
[29] |
LEE J S, BRITT L L, COOK M A, et al. Effect of light intensity and feed density on feeding behaviour, growth and survival of larval sablefish Anoplopoma fimbria[J]. Aquac Res, 2017, 48(8): 4438-4448. doi: 10.1111/are.13269
|
[30] |
HANDELAND S O, BERGE Å, BJÖRNSSON B T, et al. Seawater adaptation by out-of-season Atlantic salmon (Salmo salar L. ) smolts at different temperatures[J]. Aquaculture, 2000, 181(3/4): 377-396.
|
[31] |
张建明, 郭柏福, 高勇. 中华鲟幼鱼对慢性拥挤胁迫的生长、摄食及行为反应[J]. 中国水产科学, 2013, 20(3): 592-598.
|
[32] |
曹晓慧, 刘晃, 戚仁宇, 等. 循环水养殖大口黑鲈摄食颗粒饲料的声学特征[J]. 农业工程学报, 2021, 37(20): 219-225. doi: 10.11975/j.issn.1002-6819.2021.20.025
|
[33] |
陈慧, 谢友佺, 林国文, 等. 鬼鲉早期发育阶段的摄食节律与饥饿致死时间[J]. 中国水产科学, 2009, 16(3): 340-347. doi: 10.3321/j.issn:1005-8737.2009.03.005
|