TIAN Tian, ZHANG Jianming, ZHU Xin, ZHANG Dezhi, HU Yacheng. Analysis of intestinal microbial community structure of 50 DAH Acipenser sinensis juvenile and its impact factors[J]. South China Fisheries Science, 2025, 21(2): 102-109. DOI: 10.12131/20240255
Citation: TIAN Tian, ZHANG Jianming, ZHU Xin, ZHANG Dezhi, HU Yacheng. Analysis of intestinal microbial community structure of 50 DAH Acipenser sinensis juvenile and its impact factors[J]. South China Fisheries Science, 2025, 21(2): 102-109. DOI: 10.12131/20240255

Analysis of intestinal microbial community structure of 50 DAH Acipenser sinensis juvenile and its impact factors

Funds: Chinese Sturgeon Research Institute of China Three Gorges Corporation/Hubei Key Laboratory of Three Gorges Project for Fish Resource Conservation, Yichang 443100, China
More Information
  • Received Date: October 31, 2024
  • Revised Date: December 30, 2024
  • Accepted Date: January 22, 2025
  • Available Online: February 13, 2025
  • Intestinal microbiome is regarded as the "second genome" of host. Comprehending the influences of external factors on the structure of the intestinal microbial community in juvenile Chinese sturgeon (Acipenser sinensis) can provide a reference for its healthy breeding. Taking 50 DAH A. sinensis juvenile as objects, we applied the high-throughput sequencing technology to analyze the characteristics of intestine and intestinal content, and explore their correlation with feed and culture source water. The results show that on genus level, there were differences in the microbial composition between intestine and intestinal content. The intestine was mainly composed of Acinetobacter, Lactococcus, Citrobacter, Pseudomonas and Clostridium_sensu_stricto_1, while the intestinal content was mainly composed of Lactococcus, Clostridium_sensu_stricto_1 and Terrisporobacter. Source Tracker analysis verified that 82.68% of the intestine community came from the feed, and 1.89% came from the culture source water. While 94.60% of the intestinal content community came from the feed, and 0.93% came from the culture source water. The study indicates that there are differences in the microbial composition of the intestine and intestinal content of the juvenile on genus level. The dominant bacterial genera in the former are mostly potential pathogenic bacteria, while those in the latter are mostly beneficial bacteria. Compared with the culture source water, the feed has a higher contribution to the composition of the intestine and intestinal content microbial community.

  • [1]
    WANG A R, RAN C, RING Ø E, et al. Progress in fish gastrointestinal microbiota research[J]. Rev Aquac, 2018, 10(3): 626-640. doi: 10.1111/raq.12191
    [2]
    李鸣霄, 强俊, 徐钢春, 等. 不同养殖阶段的大口黑鲈肠道结构和肠道微生物组成变化的比较[J]. 动物营养学报, 2023, 35(9): 5886-5903. doi: 10.12418/CJAN2023.541
    [3]
    孟晓林, 聂国兴. 鱼类肠道菌群与机体脂质代谢关系研究进展[J]. 中国水产科学, 2019, 26(6): 1221-1229.
    [4]
    BUTT R L, VOLKOFF H. Gut microbiota and energy homeostasis in fish[J]. Front Endocrinol, 2019, 10(9): 9.
    [5]
    翟万营. 南极鱼亚目鱼类肠道、皮肤黏液及其生存水环境微生物结构和功能研究[D]. 上海: 上海海洋大学, 2020: 1-13.
    [6]
    朱昊俊, 强俊, 徐钢春, 等. 哈尼梯田稻-渔共作模式下杂交黄颡鱼肠道微生物研究[J]. 水生生物学报, 2021, 45(6): 1232-1242.
    [7]
    KORMAS K A, MEZITI A, MENTE E, et al. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata)[J]. MicrobiologyOpen, 2014, 3(5): 718-728. doi: 10.1002/mbo3.202
    [8]
    胡安东, 张明洋, 张飘, 等. 类志贺邻单胞菌感染对鲟鱼肠道菌群多样性的影响[J]. 中国兽医学报, 2020, 40(2): 311-317.
    [9]
    王淼, 卢迈新, 衣萌萌, 等. 水体中泼洒复合乳杆菌对尼罗罗非鱼养殖池塘环境、肠道和鳃健康的影响[J]. 水产学报, 2020, 44(4): 651-660.
    [10]
    赵峰, 庄平, 张涛, 等. 长江口中华鲟生物学与保护[M]. 北京: 中国农业出版社, 2018: 1-6.
    [11]
    罗江, 杜浩, 危起伟, 等. 濒危中华鲟人工群体的繁殖生物学[J]. 中国水产科学, 2020, 27(3): 269-276.
    [12]
    LIU J H, ULLAHKHAN F, JIN S, et al. Indexing serum and mucous biochemical parameters of endangered Chinese sturgeon Acipenser sinensis with implications for health assessment[J]. J Fish Biol, 2024, 104(4): 1180-1192. doi: 10.1111/jfb.15662
    [13]
    陈沛, 杨元金, 杜合军, 等. 开口饲料对中华鲟仔鱼生长性能、消化酶活性以及抗氧化和免疫功能的影响[J]. 动物营养学报, 2023, 35(2): 1160-1168. doi: 10.12418/CJAN2023.109
    [14]
    WANG B Z, WU B, LIU X Q, et al. Whole-genome sequencing reveals autooctoploidy in Chinese sturgeon and its evolutionary trajectories[J]. Genom Proteom Bioinf, 2024, 22(1): qzad002. doi: 10.1093/gpbjnl/qzad002
    [15]
    HU Y C, TAN R H, ZHU X, et al. Genome-wide identification, phylogeny and expressional of the Dmrt gene family in Chinese sturgeon (Acipenser sinensis)[J]. Sci Rep, 2024, 14(1): 4231. doi: 10.1038/s41598-024-54899-9
    [16]
    ZHOU M, ZHANG D Z, LONG X M, et al. Biochemical compositions and transcriptome analysis reveal dynamic changes of embryonic development and nutrition metabolism in Chinese sturgeon (Acipenser sinensis)[J]. Aquaculture, 2023, 577: 740003. doi: 10.1016/j.aquaculture.2023.740003
    [17]
    MUHAMMAD M, ZHANG T, GONG S Y, et al. Streptococcus iniae: a growing threat and causative agent of disease outbreak in farmed Chinese sturgeon (Acipenser sinensis)[J]. Pak J Zool, 2020, 52(5): 1931-1939.
    [18]
    吴建辉, 陈锦辉, 高春霞. 基于标志放流信息的长江口中华鲟降海洄游和分布特征[J]. 中国水产科学, 2021, 28(12): 1559-1567. doi: 10.12264/JFSC2021-0086
    [19]
    徐雪峰. 中华鲟消化系统的发育及消化酶活性变化的研究[D]. 武汉: 华中农业大学, 2006: 15-23.
    [20]
    田甜, 张建明, 朱欣, 等. 长江鲟幼鱼黏液、肠道内容物及其养殖水体的微生物菌群结构和潜在病原菌分析[J]. 南方水产科学, 2023, 19(6): 71-83. doi: 10.12131/20230092
    [21]
    田甜, 张建明, 朱欣, 等. 长江鲟早期发育阶段肠道菌群塑造机制[J]. 中国水产科学, 2024, 31(5): 546-556.
    [22]
    DULSKI T, ZAKES Z, CIESIELSKI S. Characterization of the gut microbiota in early lifestages of pikeperch Sander lucioperca[J]. J Fish Biol, 2018, 92(1): 94-104. doi: 10.1111/jfb.13496
    [23]
    GAJARDO K, RODILES A, KORTNER T M, et al. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research[J]. Sci Rep, 2016, 6: 30893. doi: 10.1038/srep30893
    [24]
    HUANG Q, SHAM R C, DENG Y, et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors[J]. Mol Ecol, 2020, 29(24): 5019-5034. doi: 10.1111/mec.15699
    [25]
    ZHANG Y P, XIAO X P, ELHAG O, et al. Hermetia illucens L. larvae-associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure[J]. Microb Biotechnol, 2022, 15(10): 2631-2644. doi: 10.1111/1751-7915.14113
    [26]
    黄一倍, 杨求华, 李忠琴, 等. 仿刺参 (Apostichopus japonicus) 肠道源乳酸乳球菌 (Lactococcus lactis) 的分离鉴定及其益生特性分析[J]. 海洋与湖沼, 2023, 54(3): 875-884. doi: 10.11693/hyhz20221000260
    [27]
    王艳芳. 滇黄精多糖改善大鼠脂代谢紊乱的作用研究[D]. 昆明: 云南中医学院, 2017: 41-52.
    [28]
    孙云, 何明旺, 张盼盼, 等. 美洲鳗鲡致病性鲍曼不动杆菌的分离、鉴定及致病性分析[J]. 水产学报, 2020, 44(9): 1561-1571.
    [29]
    ZHANG M J, DOU Y Q, XIAO Z D, et al. Identification of an Acinetobacter lwoffii strain isolated from diseased hybrid sturgeon (Acipenser baerii♀×Acipenser schrenckii♂)[J]. Aquaculture, 2023, 574: 73964.
    [30]
    黄莉萍. 黄颡鱼源弗氏柠檬酸杆菌的分离鉴定及病理变化研究[D]. 重庆: 西南大学, 2020: 14-25.
    [31]
    GONG C P, GUO M Y, LOU J F, et al. Identification and characterization of a highly virulent Citrobacter freudii isolate and its activation on immune responses in largemouth bass (Micropterus salmoides)[J]. Fish Shellfish Immun, 2023, 143: 109224. doi: 10.1016/j.fsi.2023.109224
    [32]
    蔺宝珠, 赵露, 王浩伊, 等. 半滑舌鳎源维罗纳假单胞菌的分离鉴定及药敏试验[J]. 大连海洋大学学报, 2023, 38(6): 987-993.
    [33]
    姜燕, 曹亚男, 柳学周, 等. 许氏平鲉仔鱼、稚鱼、幼鱼肠道微生物群结构特征[J]. 水产科学, 2020, 39(2): 200-208.
    [34]
    苟妮娜, 钟明智, 王开锋. 基于16S rRNA高通量测序的野生和养殖多鳞白甲鱼肠道微生物群落组成研究[J]. 西北农业学报, 2021, 30(7): 963-970.
    [35]
    刘瑜. 不同类型非淀粉多糖介导肠道菌群及其代谢产物调控大口黑鲈肠道健康机制研究[D]. 湛江: 广东海洋大学, 2023: 95-96.
    [36]
    刘欣. 饲料中添加不同形式的乳酸菌M2-4对刺参肠道菌群、代谢及免疫相关基因的影响[D]. 烟台: 鲁东大学, 2023: 1-5.
    [37]
    李珊珊, 张伟佳, 高阳, 等. 光唇鱼仔稚幼鱼肠道菌群与养殖水体细菌群落的相关性[J]. 水生生物学报, 2023, 47(8): 1313-1322. doi: 10.7541/2023.2022.0330
    [38]
    龚钰雯, 黄春红, 覃日锐, 等. 低pH值养殖水对罗非鱼肠道菌群结构的影响[J]. 黑龙江畜牧兽医, 2024(8): 117-125.
    [39]
    马兴宇, 唐忠林, 陈树桥, 等. 转食饲料对大口黑鲈幼鱼的存活率、抗氧化酶和消化酶活性及肠道菌群的影响[J]. 中国水产科学, 2024, 31(4): 403-415.
    [40]
    ZAN Z J, CHEN K, WANG H Y, et al. Effects of a multistrain probiotic on the growth, immune function and intestinal microbiota of the tongue sole Cynoglossus semilaevis[J]. Aquaculture, 2023, 575: 739813. doi: 10.1016/j.aquaculture.2023.739813
  • Related Articles

    [1]WANG Zhilong, XIA Yun, XIE Jun, SHU Rui, WANG Guangjun, YU Ermeng, LEI Xiaoting, GONG Wangbao. Comparative analysis of muscle quality, intestinal morphology and microbial composition in two cultured frogs species[J]. South China Fisheries Science, 2024, 20(1): 173-183. DOI: 10.12131/20230159
    [2]ZHAO Wenyu, YU Dawei, DONG Junli, XIA Wenshi, LI Lihua. Effect of different molecular weight chitosan coating on preservation of fish fillets during refrigerated storage[J]. South China Fisheries Science, 2022, 18(2): 150-157. DOI: 10.12131/20210333
    [3]TAO Feiyan, PAN Chuang, CHEN Shengjun, HU Xiao, DENG Jianchao, LI Chunsheng, RONG Hui, WANG Yueqi. Microbial analysis of Litopenaeus vannamei during partial freezing storage by Illumina high throughput sequencing[J]. South China Fisheries Science, 2021, 17(2): 104-113. DOI: 10.12131/20200211
    [4]ZHANG Jiasong, DUAN Yafei, ZHANG Zhenzhen, DONG Hongbiao, LI Zhuojia. Research progress of intestinal microbial flora in shrimp[J]. South China Fisheries Science, 2015, 11(6): 114-119. DOI: 10.3969/j.issn.2095-0780.2015.06.016
    [5]YOU Gang, WU Yanyan, LI Laihao, YANG Xianqing, QI Bo, CHEN Shengjun. Effect of inoculating compound lactic acid bacteria on microbial, nitrites and nitrosamines of salted fish[J]. South China Fisheries Science, 2015, 11(4): 109-115. DOI: 10.3969/j.issn.2095-0780.2015.04.016
    [6]SHI Haifeng, GAO Jian, YING Jie, LIN Jianyu, XU Xinbo, LUO Hongyu. Preservation effects of water-soluble chitosan on surimi product[J]. South China Fisheries Science, 2011, 7(4): 49-54. DOI: 10.3969/j.issn.2095-0780.2011.04.008
    [7]DIAO Shiqiang, LI Laihao, CEN Jianwei, WU Yanyan. Preservation effect of ozone water on anchovy (Engraulis japonius) during controlled freezing-point storage[J]. South China Fisheries Science, 2011, 7(3): 8-13. DOI: 10.3969/j.issn.2095-0780.2011.03.002
    [8]WU Yunhui, LIN Lifang, QIU Chengyu. Application of sodium carboxymethylcellulose coating in preservation of razor clam[J]. South China Fisheries Science, 2011, 7(2): 68-72. DOI: 10.3969/j.issn.2095-0780.2011.02.011
    [9]ZOU Li, MIAO Zhenqing, YU Cungen, CHEN Zhihai, ZHENG Ji, ZHANG Feijun, SHUI Bonian. Analysis of composition and diversity of catches by stow net[J]. South China Fisheries Science, 2010, 6(6): 46-53. DOI: 10.3969/j.issn.1673-2227.2010.06.008
    [10]DIAO Shiqiang, CHEN Peiji, LI Laihao, YANG Xianqing, WU Yanyan, HAO Shuxian, CEN Jianwei. Research on the application of ozone ice in Litopeneaus vannamei preservation[J]. South China Fisheries Science, 2008, 4(1): 53-57.

Catalog

    Article views (347) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return