Citation: | LI Changjun, HE Zhongxiang, PENG Hua, DENG Kai, ZHANG Ying, WU Weidong. Purification effect of hydrolysis ozone treatment on water quality of a recirculating aquaculture system of perch (Lateolabrax japonicus)[J]. South China Fisheries Science. DOI: 10.12131/20240247 |
The hydrolysis ozone which has strong bactericidal and purification effects has great potential for application in recirculating aquaculture system (RAS). To investigate the water purification effect of hydrolysis ozone, we constructed a RAS for perches (Lateolabrax japonicus) mainly using hydrolysis ozone treatment during a 120 days' aquaculture period. We measured the effects of different hydrolysis ozone aeration duration (30 min, 60 min, 90 min) on the water quality of the RAS. The results show that: 1) Perches grew well in a high-density aquaculture system, and their mass increased about 4.43 g every day with the final survival rate of 70.22%. No fish diseases were observed during the aquaculture process. 2) Hydrolysis ozone aeration could purify the RAS tail water by effectively removing ammonia nitrogen and nitrite, reducing the biochemical oxygen demand (COD) of tail water, and increasing dissolved oxygen (DO) and pH. Besides, it had less impacts on the increase of total nitrogen content (TN) and nitrate content. 3) The longer the ozone aeration time was, the better the removal effect of COD, ammonia nitrogen, and nitrite in the RAS would be. Under the 90-minute aeration treatment (Ozone mass concentration reached to 0.63 mg·L−1), the removal rates of COD, NH3-N, and NO−2 reached 44.32%, 36.85%, and 79.27%, respectively. Therefore, it is concluded that hydrolysis ozone has a good effect on improving the density of RAS, effectively controlling the occurrence of fish diseases and purifying the tail water of RAS.
[1] |
任广义. 工厂化水产养殖循环水处理技术研究进展[J]. 南方农业, 2022, 16(24): 186-188.
|
[2] |
胡海燕. 水产养殖废水氨氮处理研究[D]. 青岛: 中国海洋大学, 2007: 16-35.
|
[3] |
MOOK W T, CHAKRABARTI M H, AROUA M K et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review[J]. Desalination, 2012, 285: 1-13. doi: 10.1016/j.desal.2011.09.029
|
[4] |
杨岳, 关成立, 张水梅, 等. 水产养殖废水处理技术及研究进展[J]. 当代化工研究, 2017(8): 73-75. doi: 10.3969/j.issn.1672-8114.2017.08.040
|
[5] |
庞朝晖, 彭彩红, 周书葵. 短程电极生物膜处理养殖废水中高氨氮的试验研究[J]. 工业水处理, 2015, 35(7): 43-46. doi: 10.11894/1005-829x.2015.35(7).043
|
[6] |
黄晓婷. O3-BAC工艺在封闭循环水养殖水处理中的应用研究[D]. 广州: 华南理工大学, 2011: 22-37.
|
[7] |
张海耿. 生物滤池及人工湿地净化工厂化海水养殖废水效果研究[D]. 上海: 上海海洋大学, 2011: 14-30.
|
[8] |
王芬, 程云生, 侯冠军, 等. 电化学降解技术在水产养殖废水处理的研究现状及应用前景[J]. 水处理技术, 2018, 44(7): 6-9.
|
[9] |
SCHROEDER J P, CROOT P L, Von DEWITZ B. Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems[J]. Aquac Eng, 2011, 45(1): 35-41. doi: 10.1016/j.aquaeng.2011.06.001
|
[10] |
WEI C H, ZHANG F Z, HU Y, et al. Ozonation in water treatment: the generation, basic properties of ozone and its practical application[J]. Rev Chem Eng, 2016, 33(1): 49-89.
|
[11] |
李海云, 龚春河, 邓橙, 等. 低压电解水制备臭氧及其杀菌性能评价[J]. 水处理技术, 2022, 48(5): 48-52.
|
[12] |
刘永霞. 臭氧水的制备及杀菌效果研究[D]. 天津: 天津科技大学, 2020: 3-15.
|
[13] |
乔彩云, 李建科, 惠伟, 等. 臭氧技术及其在消毒杀菌和果蔬保鲜方面的应用研究进展[J]. 食品工业科技, 2012, 33(10): 432-435.
|
[14] |
毛艳萍, 蔡兰坤, 韩菲菲, 等. PEM式臭氧消毒在地上游泳池水处理中的应用[J]. 环境工程学报, 2010, 4(7): 1561-1565.
|
[15] |
朱世斌, 方根满. PEM低压电解臭氧技术的优势及在制药工艺用水中的应用[J]. 机电信息, 2012(5): 8-14.
|
[16] |
方敏, 沈月新. 臭氧及其在水产品保鲜中的应用[J]. 水产科学, 2003(4): 35-37. doi: 10.3969/j.issn.1003-1111.2003.04.011
|
[17] |
郭恩彦, 谭洪新, 罗国芝, 等. 臭氧/ 生物活性炭深度处理循环养殖废水[J]. 环境污染与防治, 2009, 31(10): 6-9. doi: 10.3969/j.issn.1001-3865.2009.10.002
|
[18] |
陆洪宇, 马文成, 张梁, 等. 臭氧催化氧化工艺深度处理印染废水[J]. 环境工程学报, 2013, 7(8): 2873-2876.
|
[19] |
黄滨, 马腾, 刘宝良, 等. 不同浓度臭氧对循环水养殖系统生物膜活性及其净化效能的影响[J]. 渔业科学进展, 2016, 37(3): 143-147. doi: 10.11758/yykxjz.20150309003
|
[20] |
李海云. 低压电解法制备臭氧技术研究[D]. 天津: 天津工业大学, 2021: 6-13.
|
[21] |
彭洪江, 卢鑫, 芦伟. 电解法臭氧生产技术原理及研究进展[J]. 科技资讯, 2019, 17(5): 87-89.
|
[22] |
魏征. 电解法臭氧发生装置的制备与性能研究[D]. 武汉: 华中科技大学, 2009: 8-32.
|
[23] |
王兴国, 张延青, 李贤, 等. 海水中臭氧总残留氧化物三种检测方法的比较研究[J]. 海洋科学, 2015, 39(12): 21-27. doi: 10.11759/hykx20150506002
|
[24] |
王海姮, 侯昊晨, 刘鹰. 循环水养殖系统的研究进展及发展趋势[J]. 水产科学, 2023, 42(4): 735-741.
|
[25] |
卢咏梅, 艾健, 杨军, 等. 池塘工程化循环水养殖加州鲈试验[J]. 水产养殖, 2019, 40(7): 43-48.
|
[26] |
刘海英, 曲克明, 马绍赛. 养殖水体中溶解氧的变化及收支平衡研究概况[J]. 渔业科学进展, 2005, 26(2): 79-84. doi: 10.3969/j.issn.1000-7075.2005.02.015
|
[27] |
韩世成, 戚翠战, 曹广斌, 等. 臭氧消毒杀菌技术在工厂化水产养殖中的应用[J]. 水产学杂志, 2015, 28(6): 44-52. doi: 10.3969/j.issn.1005-3832.2015.06.010
|
[28] |
黄安妮, 马海霞, 邓建朝, 等. 高浓度臭氧冰的制备及贮藏条件探究[J]. 南方水产科学, 2023, 19(6): 134-141. doi: 10.12131/20230084
|
[29] |
周晓见, 黄文章, 白希尧. 臭氧活化水养殖尼罗罗非鱼的实验研究[J]. 大连海事大学学报, 2002, 28(2): 63-65. doi: 10.3969/j.issn.1006-7736.2002.02.017
|
[30] |
宋奔奔, 倪琦, 张宇雷, 等. 臭氧对大菱鲆半封闭循环水养殖系统水质净化研究[J]. 渔业现代化, 2011, 38(6): 11-15. doi: 10.3969/j.issn.1007-9580.2011.06.003
|
[31] |
SPILIOTOPOULOU A, ROJAS-TIRADO P, CHHETRI R K, et al. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems[J]. Water Res, 2018, 133(15): 289-295.
|
[32] |
管崇武, 张宇雷, 宋红桥, 等. 臭氧对循环水养殖水体水质的净化效果及机理研究[J]. 渔业现代化, 2018, 45(6): 14-18. doi: 10.3969/j.issn.1007-9580.2018.06.003
|
[33] |
周煊亦, 房燕, 曹广斌, 等. 臭氧处理技术在工厂化水产养殖中的应用研究[J]. 水产学杂志, 2012, 25(1): 49-57. doi: 10.3969/j.issn.1005-3832.2012.01.012
|
[34] |
SCHROEDER J P , KLATT S F , SCHLACHTER M, et al. Impact of ozonation and residual ozone-produced oxidants on the nitrification performance of moving-bed biofilters from marine recirculating aquaculture systems[J]. Aquac Eng, 2015, 65: 27-36.
|
[35] |
EDWARDS M, BOLLER M, AND BENJAMIN M M. Effect of pre-ozonation on removal of organic matter during water treatment plant operations[J]. Water Sci Technol, 1993, 27(4): 37-45.
|
[36] |
AIKEN A. Use of ozone to improve water quality in aquatic exhibits[J]. Int Zoo Yearbook, 1995, 34(1): 106-114. doi: 10.1111/j.1748-1090.1995.tb00668.x
|
[37] |
SENGCO M. Mitigation of effects of harmful algal blooms, shellfish safety and quality[M]. London: Woodhead Food Ser, 2009: 175-199.
|
[38] |
WESTERHOFF P, NALINAKUMARI B, PEI P. Kinetics of MIB and geosmin oxidation during ozonation[J]. Ozone: Science & Engineering, 2006, 28(5): 277-286.
|
[39] |
管崇武, 杨菁, 单建军, 等. 工厂化循环水养殖中臭氧/紫外线反应系统的水处理性能[J]. 农业工程学报, 2014, 30(23): 253-259. doi: 10.3969/j.issn.1002-6819.2014.23.032
|
[40] |
贾岚月. 臭氧/改性生物炭系统处理海水养殖废水的研究[D]. 辽宁: 辽宁工程技术大学, 2021: 26-35.
|
[41] |
黄滨, 马腾, 刘宝良, 等. 不同浓度臭氧对循环水养殖系统生物膜活性及其净化效能的影响[J]. 渔业科学进展, 2016, 37(3): 143-147. doi: 10.11758/yykxjz.20150309003
|
[42] |
SUN Y, LU J, QIU T L, et al. The dissolution of total suspended solids and treatment strategy of tailwater in a Litopenaeus vannamei recirculating aquaculture system[J]. J Oceanol Limnol, 2023, 41(3): 1197-1205. doi: 10.1007/s00343-022-1405-x
|
[43] |
朱明瑞, 曹广斌, 蒋树义, 等. 工厂化水产养殖水体的pH值在线自动控制系统[J]. 水产学报, 2007, 31(3): 335-342.
|
[44] |
王振华, 谷坚, 管崇武, 等. 几种碱性试剂对循环水养殖系统中pH调节的研究[J]. 中国农学通报, 2010, 26(1): 308-311.
|