Citation: | DONG Mei, FENG Kecheng, SHEN Ziyi, HUANG Ju. Study on preparation of Sargassum fusiforme oligosaccharides by enzyme and its antioxidant and antibacterial properties[J]. South China Fisheries Science. DOI: 10.12131/20240244 |
Sargassum fusiforme polysaccharides are the most abundant and extremely distinctive ingredients in S. fusiforme. Marine oligosaccharides are products derived from the degradation of marine polysaccharides. To extract more active oligosaccharides from S. fusiforme, we investigated the effects of oligosaccharides on antioxidant and antibacterial properties. We took S. fusiforme polysaccharide through water extraction as the raw material and prepared it by using enzymatic hydrolysis with fucoidan lyase. Then, we conducted single factor and orthogonal trials to optimize the enzymatic hydrolysis process. We examined the average degree of polymerization and reduced sugar content of S. fusiforme oligosaccharides in relation to substrate concentration, enzyme dosage, and enzymatic hydrolysis time. The optimal process parameters for enzymatic hydrolysis of S. fusiforme oligosaccharides were as follows: enzymatic hydrolysis time of 48 h, substrate concentration of 1.5%, enzyme dosage of 20 U·mL−1, and a measured reducing sugar content of (26.53±0.92) mg·mL−1. Thin layer chromatography was used to produce the monosaccharides, disaccharides and trisaccharides. The antioxidant and antibacterial properties of oligosaccharides were determined: when the mass volume concentration was 3.0 mg·mL−1, the scavenging rates of DPPH, ABTS, hydroxyl radical and superoxide anion radical were 63.1%, 80.7%, 71.3% and 57.2%, respectively. When the mass volume concentration was 3.5 mg·mL−1, the reducing power of oligosaccharides was 0.923. The bacteriostatic results show that S. fusiforme oligosaccharides have good bacteriostatic impact on Candida albicans, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Compared with S. fusiforme polysaccharide, it shows enhanced antioxidant and antibacterial effects.
[1] |
CHOI E Y, HWANG H J, KIM I H, et al. Protective effects of a polysaccharide from Hizikia fusiformis against ethanol toxicity in rats[J]. Food Chem Toxicol, 2008, 47(1): 134-139.
|
[2] |
LIU Q Q, LI G Y , ZHU S F, et al. The effects of kelp powder and fucoidan on the intestinal digestive capacity, immune response, and bacterial community structure composition of large yellow croakers (Larimichthys crocea)[J]. Fish Shellfish Immunol, 2024, 153: 109810.
|
[3] |
ALIMA A, MOHANNAD KAS, SHOEBUL I, et al. Seaweed polysaccharides: sources, structure and biomedical applications with special emphasis on antiviral potentials[J]. Future Foods, 2024, 10: 100440. doi: 10.1016/j.fufo.2024.100440
|
[4] |
刘洪超. 羊栖菜多糖的提取分离、生物活性及结构鉴定[D]. 上海: 上海海洋大学, 2017: 14-15.
|
[5] |
余泳薏. 介质阻挡放电等离子体降解羊栖菜多糖及其免疫调节活性研究[D]. 广州: 华南理工大学, 2023: 20-23.
|
[6] |
EL-FAR Y M, KHODIR A E, EMARAH Z A, et al. Fucoidan ameliorates hepatocellular carcinoma induced in rats: effect on miR 143 and inflamnation[J]. Nutr Cancer, 2020, 73(8): 1-13.
|
[7] |
马婷, 曲航, 杨海龙. 提取方法对羊栖菜多糖理化性质及体外生物活性的影响[J]. 食品安全质量检测学报, 2023, 14(15): 259-268.
|
[8] |
ZHENG Q W, JIA R B, QU Z R, et al. Comparative study on the structural characterization and α-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions. [J]. Int J Biol Macromol, 2021, 194: 602-610.
|
[9] |
MAO W J, LI B F, GU Q Q, et al. Preliminary studies on the chemical characterization and antihyperlipidemic activity of polysaccharide from the brown alga Sargassum fusiforme[J]. Hydrobiologia, 2004, 512(1/2/3): 263-266.
|
[10] |
PASKALEVA E E, LIN X, DUUS K, et al. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase[J]. Virol J, 2008, 5(1): 8. doi: 10.1186/1743-422X-5-8
|
[11] |
TANG M T, JIANG H, WAN C, et al. Hypolipidemic activity and mechanism of action of Sargassum fusiforme polysaccharides[J]. Chem Biodivers, 2023, 20(8): e202300264.
|
[12] |
HU P, LI Z X, CHEN M C, et al. Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice[J]. Carbohydr Polym, 2016, 139: 150-158.
|
[13] |
CHEN P, YANG S, HU C, et al. Sargassum fusiforme polysaccharide rejuvenates the small intestine in mice through altering its physiology and gut microbiota composition[J]. Curr Mol Med, 2017, 17(5): 350-358.
|
[14] |
黄小流, 罗辉, 黄玉珊, 等. 马齿苋多糖对断奶大鼠肠道菌群影响的研究[J]. 动物营养学报, 2021, 33(8): 4694-4707. doi: 10.3969/j.issn.1006-267x.2021.08.048
|
[15] |
ZHANG Y B, QIN S, SONG Y P, et al. Alginate oligosaccharide alleviated cisplatin-induced kidney oxidative stress via Lactobacillus genus-fahfas-nrf2 axis in mice[J]. Front Immunol, 2022, 13: 857242. doi: 10.3389/fimmu.2022.857242
|
[16] |
张玉姣, 孙晓娜, 田伟功, 等. 岩藻多糖及其降解物在小鼠肠道中的代谢及对肠道代谢产物的影响[J]. 现代食品科技, 2022, 38(12): 26-33.
|
[17] |
IKEDA-OHTSUBO W, LOPEZ NADAL A, ZACCARIA E, et al. Intestinal microbiota and immune modulation in zebrafish by fucoidan from okinawa mozuku (Cladosiphon okamuranus)[J]. Front Nutr, 2020, 7: 67. doi: 10.3389/fnut.2020.00067
|
[18] |
胡顺强, 郑恩萍, 赵婷雪, 等. 羊栖菜多酚微胶囊的制备及稳定性评价[J]. 现代食品, 2022, 28(15): 156-160.
|
[19] |
何丹. 利用羊栖菜开发生物有机肥及其应用研究[D]. 杭州: 浙江大学, 2018: 13-15.
|
[20] |
季德胜. 羊栖菜多糖分离纯化、结构鉴定及拮抗UVB辐射造成的皮肤光老化损伤研究[D]. 广州: 华南理工大学, 2017: 30.
|
[21] |
DU R Y, GUO W W, YU S, et al. In situ assay of the reducing sugars in hydrophilic natural deep eutectic solvents by a modified DNS method[J]. J Mol Liq, 2023, 385: 122286.
|
[22] |
葛东振. 酶法制备褐藻胶寡糖及其在方斑东风螺养殖上的应用评价[D]. 保定: 河北农业大学, 2022: 23-24.
|
[23] |
詹梦涛, 娄水珠, 刘仙花, 等. 3, 5-二硝基水杨酸法测定液体糖中总糖含量[J]. 云南民族大学学报 (自然科学版), 2020, 29(4): 317-321.
|
[24] |
汪梓旭. 孤囊马尾藻多糖与寡糖制备工艺优化[D]. 海口: 海南大学, 2020: 34-36.
|
[25] |
梁美娜, 张立宁, 林振, 等. 不同海区养殖羊栖菜组成分析及多糖的抗氧化活性研究[J]. 食品工业科技, 2023, 44(22): 275-284.
|
[26] |
杨斯淇. 羊栖菜多糖酶解产物及其分离纯化组分的生物活性研究[D]. 杭州: 浙江工商大学, 2018: 30-32.
|
[27] |
褚晨亮, 欧阳东菊, 陈润柯, 等. 三桠苦提取物抑菌活性研究[J]. 山东化工, 2024, 53(4): 30-32, 36. doi: 10.3969/j.issn.1008-021X.2024.04.009
|
[28] |
张占霞, 闫路娜, 崔媛婕. 响应面优化酶法提取地皮菜粗多糖工艺的研究[J]. 中国食品添加剂, 2024, 35(10): 118-124.
|
[29] |
WU Q, QIN D D, CAO H X, et al. Enzymatic hydrolysis of polysaccharide from Auricularia auricula and characterization of the degradation product[J]. Int J Biol Macromol, 2020, 162: 127-135. doi: 10.1016/j.ijbiomac.2020.06.098
|
[30] |
王闪闪, 黄秀芳, 何华汉, 等. 山桐子饼粕多糖的提取优化及抗氧化活性研究[J]. 中国粮油学报, 2024: 1-17.
|
[31] |
YIN D F, SUN X J, LI N, et al. Structural properties and antioxidant activity of polysaccharides extracted from Laminaria japonica using various methods[J]. Protoc Bioinformatics, 2021, 111(P2): 201-209.
|
[32] |
许波杰, 闫培生. 褐藻多糖的提取及生物活性研究进展[J]. 现代食品科技, 2024, 40(7): 369-378.
|
[33] |
崔永燕, 杨敏, 刘楠, 等. 褐藻胶寡糖的酶法定向制备及其结构-功能关系的研究进展[J]. 食品科学, 2024, 45(10): 320-329. doi: 10.7506/spkx1002-6630-20230512-109
|
[34] |
邓雄, 熊燕飞, 伍树松, 等. 褐藻寡糖对低初生重断奶仔猪抗氧化能力、免疫功能和肠道上皮屏障的影响[J]. 动物营养学报, 2024, 36(7): 4271-4280. doi: 10.12418/CJAN2024.368
|
[35] |
马斌, 苏航, 徐永江, 等. 褐藻寡糖对花鲈幼鱼生长和生理指标及肠道组织形态的影响[J]. 南方水产科学, 2024, 20(3): 76-84. doi: 10.12131/20240022
|
[36] |
史文军, 王学江, 李峰, 等. 饲料中添加褐藻寡糖对脊尾白虾免疫能力的影响[J]. 江苏农业学报, 2024, 40(4): 698-710. doi: 10.3969/j.issn.1000-4440.2024.04.014
|
[37] |
乔艳艳, 蒋洪洲, 李冬男, 等. 蓝莓多糖的结构解析、抗氧化及抗菌活性[J]. 食品科学, 2024: 1-16.
|
[38] |
王转莉, 徐玲玲, 杨盼. 影响蒲公英多糖抑菌效果因素的研究[J]. 西安文理学院学报 (自然科学版), 2024, 27(4): 74-77.
|
[39] |
马巧丽, 胡玉龙, 李杰明, 等. 雪莲多糖的结构分析及其生物活性研究进展[J]. 中南药学, 2024, 22(8): 2138-2143.
|