TIAN Zhongxu, HU Xuewen, LIU Zhijian, YANG Danjie, ZHANG Jun. Efficient finite element analysis and structural lightweight of deep-sea floating raft cage[J]. South China Fisheries Science. DOI: 10.12131/20240242
Citation: TIAN Zhongxu, HU Xuewen, LIU Zhijian, YANG Danjie, ZHANG Jun. Efficient finite element analysis and structural lightweight of deep-sea floating raft cage[J]. South China Fisheries Science. DOI: 10.12131/20240242

Efficient finite element analysis and structural lightweight of deep-sea floating raft cage

More Information
  • Received Date: October 15, 2024
  • Revised Date: February 26, 2025
  • Accepted Date: March 04, 2025
  • Available Online: March 11, 2025
  • Regarding the cumbersome finite element modeling problem caused by the complex structure and diverse loads of deep-sea floating raft aquaculture cages, we applied an efficient finite element analysis and designed a structural optimization method. Taking a 40-meter-diameter deep-sea raft-type aquaculture cage as an example, we achieved parametric calculation and application of loads including wind, wave, and current through systematic algorithm development and programming. The work implemented functions such as node/element definition and real-time optimization parameter updates, while conducting secondary development based on ANSYS software. This approach enabled efficient modeling and reconstruction of the cage's finite element model. On the basis of the efficient finite element modeling, the structural optimization based on the genetic algorithm was realized, and the robustness of the optimization algorithm was enhanced by introducing the power variation function. The results show that under the condition of consistent structural strength, the optimized cage effectively reduced the mass by 17.98%. The method in this paper can provide a reference for the design and structural optimization of deep-sea floating raft aquaculture cages.

  • [1]
    LIAO W X, ZHANG S B, WU Y H, et al. Research on intelligent damage detection of far-sea cage based on machine vision and deep learning[J]. Aquac Eng, 2022(96): 102219.
    [2]
    鲍旭腾, 谌志新, 崔铭超, 等. 中国深远海养殖装备发展探议及思考[J]. 渔业现代化, 2022, 49(5): 8-14.
    [3]
    刘世晶, 李国栋, 刘晃, 等. 中国水产养殖装备发展现状[J]. 水产学报, 2023, 47(11): 190-203.
    [4]
    ZHANG Y M, BI C W, HE S Y, et al. Numerical analysis of the hydrodynamicresponse of an aquaculture-cage group inoffshore wind farm[J]. Ocean Eng, 2024, 309: 118404. doi: 10.1016/j.oceaneng.2024.118404
    [5]
    高璠, 孙树政, 刘富祥, 等. 离岸养殖装备网衣周围流场特性研究[J]. 中国造船, 2024, 65(1): 256-266.
    [6]
    徐皓, 刘晃, 黄文超. 深远海设施养殖装备技术进展与展望[J]. 上海海洋大学学报, 2023, 32(5): 893-902.
    [7]
    FAN Z Q, LIANG Y H, ZHAO Y P. Review of the research on the hydrodynamics of fishing cage nets[J]. Ocean Eng, 2023, 276: 114192. doi: 10.1016/j.oceaneng.2023.114192
    [8]
    CHENG H, LI L, AARSAETHER K G, et al. Typical hydrodynamic models for aquaculture nets: acomparative study under pure current conditions[J]. Aquac Eng, 2020, 90(1): 102070-102070.
    [9]
    JIN J, SU B, DOU R, et al. Numerical modelling of hydrodynamic responses of Ocean Farm 1 in waves and current and validation against model test measurements[J]. Mar Struct, 2021, 78(5): 103017.
    [10]
    CHENG H, ONG M C, LI L, et al. Development of a coupling algorithm for fluid-structure interaction analysis of submerged aquaculture nets[J]. Ocean Eng, 2022, 243: 110208. doi: 10.1016/j.oceaneng.2021.110208
    [11]
    BAI X D, YANG C, LUO H B. Hydrodynamic performance of the floating fish cage under extreme waves[J]. Ocean Eng, 2021, 231(2): 109082.
    [12]
    BUI C M, HO T X, KHIEU L H. Numerical study of a flow over and through offshore fish cages[J]. Ocean Eng, 2020, 201: 107140. doi: 10.1016/j.oceaneng.2020.107140
    [13]
    MAYERLE R, JARAMILLO J M F, SUGAMA K, et al. Method for layout optimization of coastal cage aquaculture systems in Southeast Asia[J]. Aquac Eng, 2024, 106: 102438. doi: 10.1016/j.aquaeng.2024.102438
    [14]
    ZHAO Y P, GUAN C T, BI C W, et al. Experimentalinvestigations on hydrodynamic responses of a semi-submersible offshore fish farm in waves[J]. J Mari Sci Eng, 2019, 7(7): 238. doi: 10.3390/jmse7070238
    [15]
    WEN X, CHENG H, ONG M C. Dynamic response of a single point mooring submersible fish cages in waves and current[J]. IOP Publishing Ltd, 2023, 1294(1): 012013.
    [16]
    HOU H M, XU T J, DON G H, et al. Time-dependent reliability analysis of mooring lines for fish cage under corrosion effect[J]. Aquac Eng, 2017, 77: 42-52. doi: 10.1016/j.aquaeng.2017.02.005
    [17]
    庞国良, 黄小华, 李根, 等. 重力式深水网箱布局参数理论计算及影响因素分析[J]. 南方水产科学, 2024, 20(01): 34-42.
    [18]
    HUANG L Y, LI Y Y, WANG G, et al. An improved Morison hydrodynamics model for knotless nets based on CFD and metamodelling methods[J]. Aquac Eng, 2022, 96: 102220. doi: 10.1016/j.aquaeng.2021.102220
    [19]
    陈诚, 王瀚彬, 张雪燕, 等. 均匀流作用下半潜式养殖网箱立柱和网衣耦合水动力数值研究[J]. 水动力学研究与进展A辑, 2024, 39(4): 606-614.
    [20]
    WANG Y H, FU S X, XU Y W, et al. Load effects on vessel-shaped fish cage steel structures, nets and connectors considering the effects of diffraction and radiation waves under irregular waves[J]. Mar Struct, 2023, 91(9): 103468.
    [21]
    黄小华, 刘海阳, 胡昱, 等. 深水养殖网箱浮架变形模拟及结构改进设计[J]. 农业工程学报, 2018, 34(15): 44-49. doi: 10.11975/j.issn.1002-6819.2018.15.006
    [22]
    PANG Z H, HAN J Q, FENG J M, et al. Performance prediction and geometry optimization of ejector in PEMFC system using coupled CFD-BPNN and genetic algorithm[J]. Appl Therm Eng, 2024, 251: 123584. doi: 10.1016/j.applthermaleng.2024.123584
    [23]
    WAN J, WAN C X, XU G Q, et al. Optimization of thermal management system architecture in hydrogen engine employing improved genetic algorithm[J]. Energy, 2024, 297: 131279. doi: 10.1016/j.energy.2024.131279
    [24]
    KUMAR S D, NICHOLAS F, PATRIZIA T, et al. Optimal Design of a canopy using parametricstructural design and a genetic algorithm[J]. Symmetry, 2023, 15(1): 142-142. doi: 10.3390/sym15010142
    [25]
    WANG X, ZHU H, GUAN C X. An energy dispatch optimization for hybrid power ship system based on improved genetic algorithm[J]. P I Mech Eng A-J pow, 2024, 238(2): 348-361.
    [26]
    邱鑫, 白梅杉, 陆文杰, 等. 基于响应面法的单元发动机喷注器优化设计[J]. 上海航天(中英文), 2024, 41(02): 130-136.
    [27]
    LUO J, TIE Y, MIYAJUAN K, et al. Aerodynamic optimization of mixed platoon Ahmed body vehicles basedon response surface method[J]. Int J Numer Methods Heat Fluid Flow, 2024, 34(1): 309-333. doi: 10.1108/HFF-04-2023-0214
    [28]
    INJETI S K, SOWJANYA K. Investigation of hybrid constriction coefficient particle swarmoptimization-based butterfly optimization algorithm for a minimum transmission power IOT cluster with full connectivity[J]. J Inst Eng India Ser B, 2023, 104: 877-892.
    [29]
    SIM B, SHIN T, PARKKEEYOUNG H, et al. Fast and accurate computation of wireless power transfer system optimal design using particle swarm optimization method[J]. IEEE T Electromagn C, 2023, 65(6 Pt. 1): 1674-1683.
    [30]
    GUO Z, TONG D, ZHAO M H. Efficiency optimization of variable iron loss resistance asynchronous motor based on grey wolf optimization algorithm[J]. J Elec Eng Technol, 2024, 19(1): 485-493. doi: 10.1007/s42835-023-01561-5

Catalog

    Article views (5) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return