Citation: | YU Weihuan, TU Youkai, WU Jinhui, YOU Lei, YU Zonghe. Embryonic and larval development of sea urchin (Temnopleurus reevesii)[J]. South China Fisheries Science, 2025, 21(2): 110-117. DOI: 10.12131/20240241 |
In order to develop the artificial breeding technology of Temnopleurus reevesii, and to provide scientific references for its artificial breeding and application, we carried out a series of laboratory procedures including spawning induction, fertilization, incubation and larval rearing. We observed its developmental process from fertilized egg to juvenile, and measured the size of the fertilized eggs, embryos and larvae. The results indicate that T. reevesii could be successfully induced to spawn by injection of 0.5 mol·L−1 KCl solution, and the fertilization rates ranged from 87.4% to 95.7%, with an average of (91.6±2.4)%. Under the conditions including water temperatures of 24–25 ℃ and a larval rearing density of approximately 1 ind·mL−1, the cleavage commenced after 45 min and the morula stage was reached by 3 h and 45 min, the blastula stage was reached by 6 h, the gastrula stage was reached by 12 h, the 2-armed larva stage was reached by 22 h, the 4-armed larva stage was reached by 1 d and 12 h, the 6-armed larva stage was reached by 5 d and 16 h, and the 8-armed larva stage was reached by 9 d. The larvae metamorphosis into juvenile happened around 32 d. Compared with other sea urchin species, T. reevesii developed faster prior to the four-armed larva stage, followed by a slower pace post that stage.
[1] |
廖玉麟, 肖宁. 中国海棘皮动物的种类组成及区系特点[J]. 生物多样性, 2011, 19(6): 729-736.
|
[2] |
YAGUCHI S, YAGUCHI J. Temnopleurus reevesii as a new sea urchin model in genetics[J]. Dev Growth Differ, 2022, 64(1): 59-66. doi: 10.1111/dgd.12768
|
[3] |
童圣英, 陈炜, 由学策, 等. 三种海胆性腺总脂的脂肪酸组成的研究[J]. 水产学报, 1998, 22(3): 56-61.
|
[4] |
TAKATA H, KOMINAMI T. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos[J]. Zool Sci, 2004, 21(10): 1025-1035. doi: 10.2108/zsj.21.1025
|
[5] |
FENG Z H, WANG R, ZHANG T, et al. Microplastics in specific tissues of wild sea urchins along the coastal areas of northern China[J]. Sci Total Environ, 2020, 728: 138660. doi: 10.1016/j.scitotenv.2020.138660
|
[6] |
HIRAMOTO Y. Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg[J]. Exp Cell Res, 1969, 56(2): 201-208.
|
[7] |
YAGUCHI S, YAGUCHI J, SUZUKI H, et al. Establishment of homozygous knock-out sea urchins[J]. Curr Biol, 2020, 30(10): 427-429. doi: 10.1016/j.cub.2020.03.057
|
[8] |
KINJO S, KIYOMOTO M, SUZUKI H, et al. TrBase: a genome and transcriptome database of Temnopleurus reevesii[J]. Dev Growth Differ, 2022, 64(4): 210-218. doi: 10.1111/dgd.12780
|
[9] |
YAGUCHI S, YAMAZAKI A, WADA W, et al. Early development and neurogenesis of Temnopleurus reevesii[J]. Dev Growth Differ, 2015, 57(3): 242-250. doi: 10.1111/dgd.12202
|
[10] |
KITAZAWA C, TSUCHIHASHI Y, EGUSA Y, et al. Morphogenesis during early development in four Temnopleuridae sea urchins[J]. Information-Tokyo, 2010, 13(3B): 1075-1089.
|
[11] |
SONNENHOLZNER-VARAS J I, TOURON N, ORRALA M M P. Breeding, larval development, and growth of juveniles of the edible sea urchin Tripneustes depressus: a new target species for aquaculture in Ecuador[J]. Aquaculture, 2018, 496: 134-145. doi: 10.1016/j.aquaculture.2018.07.019
|
[12] |
GUETE-SALAZAR C, BARROS J, VELASCO L A. Spawning, larval culture, settlement and juvenile production of the west Indian Sea egg, Tripneustes ventricosus (Lamarck, 1816), under hatchery conditions[J]. Aquaculture, 2021, 544: 737059. doi: 10.1016/j.aquaculture.2021.737059
|
[13] |
WASSON K M, WATTS S A. Endocrine regulation of echinoid reproduction[J]. Dev Aquac, 2013, 38(13): 59-67.
|
[14] |
NEILL A T, VACQUIER V D. Ligands and receptors mediating signal transduction in sea urchin spermatozoa[J]. Reproduction, 2004, 127(2): 141-149. doi: 10.1530/rep.1.00085
|
[15] |
KOBAYASHI N. Spawning periodicity of sea urchins at Seto-I. Mespilia globulus[J]. Dev Aquac, 1967, 14(5): 403-414.
|
[16] |
YAGUCHI S. Temnopleurus as an emerging echinoderm model[J]. Methods Cell Biol, 2019, 150: 71-79.
|
[17] |
洪继彪, 丁晟琦, 常亚青, 等. 哈氏刻肋海胆胚胎、幼体发育及人工养殖[J]. 大连海洋大学学报, 2022, 38(2): 1-13.
|
[18] |
王宝锋, 张伟杰, 胡方圆, 等. 高腰海胆胚胎及幼体发育过程[J]. 大连海洋大学学报, 2019, 34(4): 526-530.
|
[19] |
杜忆幽, 刘忠颖, 刘卫东. 白棘三列海胆北方育苗初试[J]. 水产养殖, 2022, 43(4): 51-53. doi: 10.3969/j.issn.1004-2091.2022.04.012
|
[20] |
席世改. 紫海胆胚胎与幼体发育研究[D]. 天津: 天津农学院, 2020: 14-15.
|
[21] |
张鹏. 马粪海胆 (Hemicentrotus pulcherrimus) 早期发育及成体能量代谢的研究[D]. 青岛: 中国海洋大学, 2004: 14.
|
[22] |
王波, 张建中, 施岩. 光棘球海胆育苗技术的初步研究[J]. 黄渤海海洋, 1993, 11(2): 55-61.
|
[23] |
曹学彬, 常亚青. 我国主要经济海胆的工厂化育苗技术[J]. 渔业现代化, 2007, 34(4): 30-32, 43. doi: 10.3969/j.issn.1007-9580.2007.04.009
|
[24] |
KITAZAWA C, TSUBASA F, YUJI E, et al. Morphological diversity of blastula formation and gastrulation in Temnopleurid sea urchins[J]. Biol Open, 2016, 5(11): 1555-1566. doi: 10.1242/bio.019018
|
[25] |
陈吉圣, 席世改, 秦传新, 等. 光照强度对紫海胆浮游幼体生长及消化酶活性的影响[J]. 渔业科学进展, 2021, 42(3): 125-131.
|
[26] |
高绪生, 孙勉英, 胡庆明, 等. 温度对光棘球海胆不同发育阶段的影响[J]. 海洋与湖沼, 1993, 24(6): 634-640. doi: 10.3321/j.issn:0029-814X.1993.06.012
|
[27] |
张鹏, 曾晓起, 尤凯. 盐度及饵料对马粪海胆幼体生长发育及变态的影响[J]. 海洋湖沼通报, 2004(4): 75-80. doi: 10.3969/j.issn.1003-6482.2004.04.013
|
[28] |
梁其旭, 张丽莉, 王国栋, 等. 紫海胆人工育苗技术的改进[J]. 集美大学学报 (自然科学版), 2021, 26(6): 481-488.
|