LIU Meiqi, YE Xuting, YANG Lu, CHEN Jiaoyu, GU Qianhong, LI Shengnan. A comparative study of environmental microbial communities between lotus-fish co-culture and conventional pond culture[J]. South China Fisheries Science, 2025, 21(1): 140-152. DOI: 10.12131/20240225
Citation: LIU Meiqi, YE Xuting, YANG Lu, CHEN Jiaoyu, GU Qianhong, LI Shengnan. A comparative study of environmental microbial communities between lotus-fish co-culture and conventional pond culture[J]. South China Fisheries Science, 2025, 21(1): 140-152. DOI: 10.12131/20240225

A comparative study of environmental microbial communities between lotus-fish co-culture and conventional pond culture

More Information
  • Received Date: September 23, 2024
  • Revised Date: November 05, 2024
  • Accepted Date: November 13, 2024
  • Available Online: November 26, 2024
  • Lotus-fish co-culture is a typical ecological farming system. To explore the effects of lotus-fish co-culture on environmental factors and microbial community in aquaculture ponds, we compared the changes in water environmental factors, microbial diversity and community composition in the water body and sediment environment between lotus-fish co-culture and conventional pond culture, through field investigation and metagenome sequencing technology. The results indicate that the nutrient contents decreased significantly but the dissolved oxygen increased significantly in lotus-fish co-culture pond. Besides, the total nitrogen in the sediment decreased from 2.323 mg·kg−1 to 2.017 mg·kg−1 averagely. The total phosphorus decreased from 0.447 mg·L−1 to 0.110 mg·L−1 but the dissolved oxygen increased from 7.253 mg·L−1 to 8.790 mg·L−1 averagely. Pseudomonadota, Actinomycetota and Candidate_division_NC10 were significantly enriched in lotus-fish co-culture pond (p<0.05). In contrast, Cyanobacteriota and Planctomycetota were enriched significantly in the conventional pond. On genus level, it was found that Microcystis, Polynucleobacter, unclassified Rhodocyclaceae were the key microbial taxa contributing most to the variations in microbial community composition; Microcystis, unclassified Deltaproteobacteria, unclassified Desulfobacterales were the key microbial taxa contributing most to the variations in microbial community composition in the sediment. RDA analysis shows that pH, NO3-N, DO, NH4-N and TOC were determined as the key environmental factors shaping microbial community composition in water body and sediment. These results indicate that lotus-fish co-culture can improve the pond water quality effectively and promote the development of probiotic microbial taxa in water body and sediment, which is important in maintaining the stability of ecological environment in aquaculture ponds.

  • [1]
    周正, 米武娟, 许元钊, 等. 克氏原螯虾两种养殖模式的食物网结构及其食性比较[J]. 水生生物学报, 2020, 44(1): 133-142. doi: 10.7541/2020.016
    [2]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 49-56.

    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 49-56.
    [3]
    唐玉华. 荷藕与黄颡鱼同塘共生种养技术 (上)[J]. 农家致富, 2018(1): 38-39.
    [4]
    YANG Z, YAO Y H, SUN M, et al. Metagenomics reveal microbial effects of lotus root-fish co-culture on nitrogen cycling in aquaculture pond sediments[J]. Microorganisms, 2022, 10(9): 1740. doi: 10.3390/microorganisms10091740
    [5]
    蒋静, 郭水荣, 陈凡, 等. 稻田养鱼模式应用特点及思考[J]. 科学养鱼, 2017(12): 4-6.
    [6]
    杨天燕, 孟玮, 高攀, 等. 基于高通量测序的鱼菜共生池塘与普通池塘微生物群落结构比较[J]. 水生生物学报, 2019, 43(5): 1104-1113. doi: 10.7541/2019.130
    [7]
    TAMMINEN M, KARKMAN A, CORANDER J, et al. Differences in bacterial community composition in Baltic Sea sediment in response to fish farming[J]. Aquaculture, 2011, 313(1/2/3/4): 15-23.
    [8]
    KOLDA A, GAVRILOVIĆ A, JUG-DUJAKOVIĆ J, et al. Profiling of bacterial assemblages in the marine cage farm environment, with implications on fish, human and ecosystem health[J]. Ecol Indic, 2020, 118: 106785. doi: 10.1016/j.ecolind.2020.106785
    [9]
    ASSEFA A, ABUNNA F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish[J]. Vet Med Int, 2018, 26(2): 1-10.
    [10]
    操建华. 水产养殖业自身污染现状及其治理对策[J]. 社会科学家, 2018(2): 46-50. doi: 10.3969/j.issn.1002-3240.2018.02.007
    [11]
    BENTZON-TILIA M, SONNENSCHEIN E C, GRAM L. Monitoring and managing microbes in aquaculture: towards a sustainable industry[J]. Microb Biotechnol, 2016, 9(5): 576-584.
    [12]
    吴代赦, 熊卿, 杜俊逸. 水产养殖对水体富营养化影响[J]. 江西科学, 2009, 27(4): 617-622. doi: 10.3969/j.issn.1001-3679.2009.04.036
    [13]
    常宝亮, 周浩民, 上官凌飞, 等. 氮、磷污染水体中荷花的生态效应和生理响应[J]. 南京农业大学学报, 2022, 45(4): 684-690. doi: 10.7685/jnau.202109037
    [14]
    种云霄, 胡洪营, 钱易. 大型水生植物在水污染治理中的应用研究进展[J]. 环境污染治理技术与设备, 2003(2): 36-40.
    [15]
    袁新程, 刘永士, 施永海, 等. 3种养殖模式下暗纹东方鲀的生长及水质变化[J]. 水产科技情报, 2021, 48(1): 14-20.
    [16]
    王传海, 李宽意, 文明章, 等. 苦草对水中环境因子影响的日变化特征[J]. 农业环境科学学报, 2007(2): 798-800. doi: 10.3321/j.issn:1672-2043.2007.02.076
    [17]
    ZHAO Y, XIA X H, YANG Z F. Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake[J]. J Environ Sci, 2013, 25(1): 16-25.
    [18]
    SU H J, WANG R, FENG Y H, et al. Long-term empirical evidence, early warning signals and multiple drivers of regime shifts in a lake ecosystem[J]. J Ecol, 2021, 109(9): 3182-3194. doi: 10.1111/1365-2745.13544
    [19]
    黄龙, 包维楷, 李芳兰, 等. 土壤结构和植被对土壤微生物群落的影响[J]. 应用与环境生物学报, 2021, 27(6): 1725-1731.
    [20]
    ENIKŐ T, TÖRÖK P, BORICS G, et al. Functional dynamics of phytoplankton assemblages in hypertrophic lakes: functional- and species diversity is highly resistant to cyanobacterial blooms[J]. Ecol Indic, 2022, 145: 109583. doi: 10.1016/j.ecolind.2022.109583
    [21]
    郑佳佳, 张小平, 胡彩虹, 等. 斯氏假单胞菌对草鱼养殖水体水质的调控作用[J]. 渔业现代化, 2013, 40(3): 5-9. doi: 10.3969/j.issn.1007-9580.2013.03.002
    [22]
    王立林, 胡艳伟. 尔王庄水库生态系统平衡关系研究[J]. 海河水利, 2014(1): 12-14. doi: 10.3969/j.issn.1004-7328.2014.01.004
    [23]
    朱广伟. 太湖富营养化现状及原因分析[J]. 湖泊科学, 2008, 20(1): 21-26. doi: 10.3321/j.issn:1003-5427.2008.01.003
    [24]
    陈建良, 胡明明, 周怀东, 等. 洱海蓝藻水华暴发期浮游植物群落变化及影响因素[J]. 水生生物学报, 2015, 39(1): 24-28. doi: 10.7541/2015.3
    [25]
    CHEN Y G, SUN H J, YANG W, et al. Response of crucian carp Carassius auratus newly-hatched larvae exposed to mixtures of microcystin and ammonia: growth and antioxidant defenses[J]. Fresenius Environ Bull, 2013, 22(4): 1253-1258.
    [26]
    PALÍKOVÁ M, KREJ'ČÍ R, HISCHEROVÁ K , et al. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.)[J]. Aquat Toxicol, 2007, 81(3): 312-318.
    [27]
    TRINCHET I, DJEDIAT C, HUET H, et al. Pathological modifications following sub-chronic exposure of medaka fish (Oryzias latipes) to microcystin-LR[J]. Reprod Toxicol, 2011, 32(3): 329-340. doi: 10.1016/j.reprotox.2011.07.006
    [28]
    CAO X K, JIANG L, ZHENG H, et al. Constructed wetlands for rural domestic wastewater treatment: a coupling of tidal strategy, in-situ bio-regeneration of zeolite and Fe (II)-oxygen denitrification[J]. Bioresour Technol, 2022, 344: 126185. doi: 10.1016/j.biortech.2021.126185
    [29]
    任丽娟, 何聃, 邢鹏, 等. 湖泊水体细菌多样性及其生态功能研究进展[J]. 生物多样性, 2013, 21(4): 422-433.
    [30]
    ZOTHANPIUA, PASSARI A K, LEO V V, et al. Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds[J]. Microb Cell Fact, 2018, 17: 1-14. doi: 10.1186/s12934-017-0850-2
    [31]
    SHEN X X, XU M, LI M, et al. Response of sediment bacterial communities to the drainage of wastewater from aquaculture ponds in different seasons[J]. Sci Total Environ, 2020, 717: 137180. doi: 10.1016/j.scitotenv.2020.137180
    [32]
    程莹寅, 吴山功, 郑英珍, 等. 主养草鱼池塘底泥微生物群落多样性研究[J]. 淡水渔业, 2011, 41(6): 43-49. doi: 10.3969/j.issn.1000-6907.2011.06.008
    [33]
    殷文健, 何俊, 李佳佳, 等. 池塘和稻田养殖环境下克氏原螯虾肠道菌群结构特征及其影响因素[J]. 饲料研究, 2023, 46(10): 58-65.
    [34]
    BISSETT A, BOWMAN J, BURKE C. Bacterial diversity in organically-enriched fish farm sediments[J]. FEMS Microbiol Ecol, 2006, 55(1): 48-56.
    [35]
    ZHANG D S, LI H, LIU Y, et al. Screening and identification of organics-degrading bacteria from the sediment of sea cucumber Apostichopus japonicus ponds[J]. Aquac Int, 2016, 24: 373-384. doi: 10.1007/s10499-015-9931-6
    [36]
    ETTWIG K F, VAN ALEN T, VAN DE PAS-SCHOONEN K T, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Appl Environ Microbiol, 2009, 75(11): 3656-3662. doi: 10.1128/AEM.00067-09
    [37]
    DINI-ANDREOTE F, STEGEN J C, van ELSAS J D, et al. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession[J]. P Natl A Sci India, 2015, 112(11): E1326-E1332.
    [38]
    韩政, 汤春宇, 邵留, 等. 多营养层级淡水生态系统构建对微生物的影响[J]. 上海海洋大学学报, 2023, 32(3): 575-585. doi: 10.12024/jsou.20210403402
    [39]
    王晓丽, 其勒格尔. 黄河内蒙古段表层沉积物细菌多样性及群落结构类型[J]. 生态学报, 2020, 40(2): 578-589.
    [40]
    阴星望, 田伟, 丁一, 等. 丹江口库区表层沉积物细菌多样性及功能预测分析[J]. 湖泊科学, 2018, 30(4): 1052-1063. doi: 10.18307/2018.0418
  • Related Articles

    [1]LIU Yu, WANG Xuehui, DU Feiyan, LIU Bilin, ZHANG Peng, LIU Mengna, QIU Yongsong. Difference analysis of trace elements in statolith of Sthenoteuthis oualaniensis in South China Sea[J]. South China Fisheries Science, 2019, 15(5): 15-24. DOI: 10.12131/20190039
    [2]ZHANG Yue, DUAN Yafei, DONG Hongbiao, ZHANG Jiasong. Effects of poly-β-hydroxybutyrate (PHB) on immune and digestive indicators in hepatopancreas of Litopenaeus vannamei[J]. South China Fisheries Science, 2017, 13(5): 78-84. DOI: 10.3969/j.issn.2095-0780.2017.05.011
    [3]JIANG Yan′e, FANG Zhanqiang, LIN Zhaojin, ZHANG Peng, CHEN Zuozhi. Trace elements in statoliths of Sthenoteuthis oualaniensis in the South China Sea[J]. South China Fisheries Science, 2016, 12(4): 71-79. DOI: 10.3969/j.issn.2095-0780.2016.04.009
    [4]YANG Xun, HAO Zongdi, ZHANG Sen, LIU Pinghuai. Effects of trophic elements and pH on growth rate and lipid productivity of Chlorella zofingiensis cells[J]. South China Fisheries Science, 2013, 9(4): 33-38. DOI: 10.3969/j.issn.2095-0780.2013.04.006
    [5]WANG Yajun, LIN Wenhui, YANG Zhihui, JIANG Jianwen, JIANG Huanbin, CHEN Dongming. Effects of replacement of fish meal by fermented soybean meal in the diet for Japanese eel (Anguill japonica) on growth performance and content of mineral elements in muscle and skin[J]. South China Fisheries Science, 2013, 9(3): 39-43. DOI: 10.3969/j.issn.2095-0780.2013.03.007
    [6]WANG Maolin, ZHANG Xiumei, GAO Tianxiang, ZHANG Peidong. Effects of Ca2+ concentrations in seawater on element content of fish body and otolith of juvenile Paralichthys olivaceus[J]. South China Fisheries Science, 2013, 9(3): 31-38. DOI: 10.3969/j.issn.2095-0780.2013.03.006
    [7]WANG Xu, LI Na, GENG Anjing, YANG Hui, WANG Fuhua. Determination of five arsenic species in seafood using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS)[J]. South China Fisheries Science, 2013, 9(2): 50-56. DOI: 10.3969/j.issn.2095-0780.2013.02.009
    [8]CAO Junming, YAN Jing, WANG Guoxia, HUANG Yanhua, ZHANG Rongbin, ZHOU Tingting, LIU Qunfang, SUN Zhiwu. Effects of replacement of fish meal with housefly maggot meal on digestive enzymes, transaminases activities and hepatopancreas histological structure of Litopenaeus vannamei[J]. South China Fisheries Science, 2012, 8(5): 72-79. DOI: 10.3969/j.issn.2095-0780.2012.05.011
    [9]QIN Pei-wen, JI Li-li, FAN Run-zhen, XIAO Bi-hong, TANG Xiao-dan, SONG Wen-dong. Analysis of volatile components and trace elements in flesh of Pinctada martensii with black shell disease[J]. South China Fisheries Science, 2010, 6(2): 35-40. DOI: 10.3969/j.issn.1673-2227.2010.02.006
    [10]WANG Xiaowei, LI Chunhou, DAI Ming. Studies on limited nutrient factors in outer of Daya Bay in winter[J]. South China Fisheries Science, 2007, 3(4): 26-31.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return