GUO Yaojie, WAN Wubo, WANG Haishan, YE Le, CHEN Zhi. Comparison of fish species detection effect of three sets of commonly used eDNA metabarcoding primers on Sanya water samples[J]. South China Fisheries Science, 2025, 21(1): 66-76. DOI: 10.12131/20240216
Citation: GUO Yaojie, WAN Wubo, WANG Haishan, YE Le, CHEN Zhi. Comparison of fish species detection effect of three sets of commonly used eDNA metabarcoding primers on Sanya water samples[J]. South China Fisheries Science, 2025, 21(1): 66-76. DOI: 10.12131/20240216

Comparison of fish species detection effect of three sets of commonly used eDNA metabarcoding primers on Sanya water samples

More Information
  • Received Date: September 09, 2024
  • Revised Date: November 03, 2024
  • Accepted Date: December 18, 2024
  • Available Online: December 25, 2024
  • Environmental DNA (eDNA) metabarcoding is a high-efficiency, high-sensitivity and non-invasive species investigation tool. At present, there are many studies on the investigation of fish diversity based on eDNA metabarcoding which however is not well-developed, with a lack of consensus on the actual use of different primers. In order to reduce the cost of sequencing and screen out the universal primers with the best practical effect, we selected the water samples from eight sites in Sanya fish markets and Atlantis Aquarium, then compared the differences of three sets of universal primers (MiFish-U, AcMDB07 and Ac12S) for fish eDNA. The results show that: 1) There were significant differences in the reads number after quality control, the fish reads number, the total Operational taxonomic units (OTUs) number, the fish OTUs number and the ratio of fish reads among three sets of primers. MiFish-U had the highest amplification efficiency and targeting to fish species; 2) MiFish-U had the highest number of species (140 species), while AcMDB07 and Ac12S had 128 and 97 species, respectively; 3) The reference databases of Ac12S and AcMDB07 were not perfect, and 72.76% and 42.11% of the OTUs belonging to Ac12S and AcMDB07 could not be annotated to the species level, respectively; 4) There are very few endemic fish detected by Ac12S (Only four species), suggesting that it was easier to be replaced by the other two sets of primers in the actual use process, and MiFish-U had the lowest substitutability; 5) The three sets of primers reflected similar general trends in the fish abundance, but there were some differences in the specific species. The results show that MiFish-U is superior to AcMDB07 and Ac12S in species detection, considering various factors such as OTUs annotation, especially the conditions of existing reference data.

  • [1]
    SALA E, MAYORGA J, BRADLEY D, et al. Protecting the global ocean for biodiversity, food and climate[J]. Nature, 2021, 592(7854): 397-402. doi: 10.1038/s41586-021-03371-z
    [2]
    ALMOND R E A, GROOTEN M, JUFFE B D, et al. Living planet report 2022: building a nature-positive society[M]. Gland: World Wide Fund for Nature, 2022: 32-34.
    [3]
    DÍAZ-FERGUSON E E, MOYER G R. History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments[J]. Rev Biol Trop, 2014, 62(4): 1273-1284. doi: 10.15517/rbt.v62i4.13231
    [4]
    THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Mol Ecol, 2012, 21(11): 2565-2573. doi: 10.1111/j.1365-294X.2011.05418.x
    [5]
    ROURKE M L, FOWLER A M, HUGHES J M, et al. Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys[J]. Environ DNA, 2022, 4(1): 9-33. doi: 10.1002/edn3.185
    [6]
    言柯程, 李建超, 田永军, 等. 基于环境DNA metabarcoding和底拖网调查的南黄海西部鱼类多样性比较[J]. 中国海洋大学学报 (自然科学版), 2023, 53(5): 71-81.
    [7]
    RUPPERT K M, KLINE R J, PAST M S R. Present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA[J]. Glob Ecol Conserv, 2019, 17: e00547.
    [8]
    赵娜, 杨刚, 吴祖立, 等. 环境DNA技术发展及其在长江流域水生生态学领域的应用研究进展[J]. 海洋渔业, 2024, 46(1): 119-128. doi: 10.3969/j.issn.1004-2490.2024.01.013
    [9]
    张方圆, 王汝贤, 杨刚, 等. 环境DNA技术在长江口中华绒螯蟹亲蟹资源监测中的应用[J]. 水生生物学报, 2024, 48(6): 950-957. doi: 10.7541/2024.2023.0337
    [10]
    THOMSEN P F, WILLERSLEV E. Environmental DNA-an emerging tool in conservation for monitoring past and present biodiversity[J]. Biol Conserv, 2015, 183: 4-18. doi: 10.1016/j.biocon.2014.11.019
    [11]
    BENG K C, CORLETT R T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects[J]. Biodivers Conserv, 2020, 29(7): 2089-2121. doi: 10.1007/s10531-020-01980-0
    [12]
    仝亚东, 匡箴, 刘鹏飞, 等. 基于环境DNA技术的东平湖鱼类多样性研究[J]. 中国水产科学, 2023, 30(12): 1530-1542. doi: 10.12264/JFSC2023-0265
    [13]
    李晨虹, 凌岚馨, 谭娟, 等. 环境DNA技术在水生生物监测中的挑战、突破和发展前景[J]. 上海海洋大学学报, 2023, 32(3): 564-574. doi: 10.12024/jsou.20221104019
    [14]
    ZHANG S, ZHAO J D, YAO M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish[J]. Methods Ecol Evol, 2020, 11(12): 1609-1625. doi: 10.1111/2041-210X.13485
    [15]
    舒璐. 基于环境DNA技术的鱼类多样性评估: 胚胎发育动力学、引物评价及洱海鱼类多样性监测[D]. 重庆: 西南大学, 2022: 37-60.
    [16]
    吕宏森, 王安香, 董智玲, 等. 长江上游鱼类环境DNA通用引物的选择与验证[J]. 水产学报, 2024, 48(6): 72-84.
    [17]
    周严, 童璐, 胡文静, 等. 淡水鱼类环境DNA宏条形码引物的筛选及其在千岛湖的应用[J]. 湖泊科学, 2024, 36(1): 187-199. doi: 10.18307/2024.0131
    [18]
    MIYA M, SATO Y, FUKUNAGA T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. R Soc Open Sci, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
    [19]
    BYLEMANS J, GLEESON D M, HARDY C M, et al. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: a case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia)[J]. Ecol Evol, 2018, 8(17): 8697-8712. doi: 10.1002/ece3.4387
    [20]
    EVANS N T, OLDS B P, RENSHAW M A, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding[J]. Mol Ecol Resour, 2016, 16(1): 29-41. doi: 10.1111/1755-0998.12433
    [21]
    VALENTINI A, TABERLET P, MIAUD C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Mol Ecol, 2016, 25(4): 929-942. doi: 10.1111/mec.13428
    [22]
    MILAN D T, MENDES I S, DAMASCENO J S, et al. New 12S metabarcoding primers for enhanced neotropical freshwater fish biodiversity assessment[J]. Sci Rep, 2020, 10(1): 17966. doi: 10.1038/s41598-020-74902-3
    [23]
    TABERLET P, BONIN A, ZINGER L, et al. Environmental DNA-for biodiversity research and monitoring[M]. Oxford: Oxford University Press, 2018: 206.
    [24]
    WILCOX T M, MCKELVEY K S, YOUNG M K, et al. Environmental DNA particle size distribution from brook trout (Salvelinus fontinalis)[J]. Conserv Genet Resour, 2015, 7: 639-641. doi: 10.1007/s12686-015-0465-z
    [25]
    JO T, ARIMOTO M, MURAKAMI H, et al. Particle size distribution of environmental DNA from the nuclei of marine fish[J]. Environ Sci Technol, 2019, 53(16): 9947-9956. doi: 10.1021/acs.est.9b02833
    [26]
    JOSEPH C, FAIQ M E, LI Z, et al. Persistence and degradation dynamics of eDNA affected by environmental factors in aquatic ecosystems[J]. Hydrobiologia, 2022, 849(19): 4119-4133. doi: 10.1007/s10750-022-04959-w
    [27]
    WOOD S A, BIESSY L, LATCHFORD J L, et al. Release and degradation of environmental DNA and RNA in a marine system[J]. Sci Total Environ, 2020, 704: 135314. doi: 10.1016/j.scitotenv.2019.135314
    [28]
    杨泰昌, 李嘉华, 张颖, 等. 香港瘰螈eDNA引物和TaqMan探针的设计与确认[J]. 动物学杂志, 2020, 55(5): 624-636.
    [29]
    闫卉果, 董智玲, 马婷婷, 等. 基于环境DNA的岩原鲤检测及生物量评估[J]. 水产学报, 2022, 46(6): 1018-1026.
    [30]
    GWAK W S, NAKAYAMA K. Development of a MGB probe based qPCR protocol for detecting Pacific cod Gadus macrocephalus in eDNA samples[J]. Conserv Genet Resour, 2023, 15(4): 175-177. doi: 10.1007/s12686-023-01320-8
    [31]
    ZHU T, IWASAKI W. MultiBarcodeTools: easy selection of optimal primers for eDNA multi-metabarcoding[J]. Environ DNA, 2023, 5(6): 1793-1808. doi: 10.1002/edn3.499
    [32]
    蒋佩文, 李敏, 张帅, 等. 基于线粒体COI和12S rDNA基因构建珠江河口鱼类DNA宏条形码数据库[J]. 南方水产科学, 2022, 18(3): 13-21.
    [33]
    BYLEMANS J. Monitoring freshwater fish communities with environmental DNA (eDNA) metabarcoding[D]. Canberra: University of Canberra, 2018: 201-204.
    [34]
    陈治, 马春来, 叶乐, 等. 鱼类环境DNA metabarcoding片段的近缘物种识别差异[J]. 海洋学报, 2022, 44(8): 51-65. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208006
    [35]
    MARQUES V, MILHAU T, ALBOUY C, et al. GAPeDNA: assessing and map global species gaps in genetic databases for eDNA metabarcoding[J]. Divers Distrib, 2021, 27(10): 1880-1892. doi: 10.1111/ddi.13142
    [36]
    NELSON J S, GRANDE T C, WILSON M V H. Fishes of the world[M]. New York: John Wiley & Sons, 2016: 1-5.
    [37]
    王月. 赤水河鱼类环境DNA宏条形码参考数据库的构建及应用[D]. 大连: 大连海洋大学, 2022: 25-39.
    [38]
    邓升铭. 我国南海鱼类的分子参考数据库的建立及宏条形码引物的开发及利用[D]. 海口: 海南大学, 2023: 15-19.
    [39]
    LIM S J, THOMPSON L R. Mitohelper: a mitochondrial reference sequence analysis tool for fish eDNA studies[J]. Environ DNA, 2021, 3(4): 706-715. doi: 10.1002/edn3.187
    [40]
    MIYA M, GOTOH R O, SADO T. MiFish metabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples[J]. Fish Sci, 2020, 86(6): 939-970. doi: 10.1007/s12562-020-01461-x
    [41]
    COUTON M, LÉVÊQUE L, DAGUIN-THIÉBAUT C, et al. Water eDNA metabarcoding is effective in detecting non-native species in marinas, but detection errors still hinder its use for passive monitoring[J]. Biofouling, 2022, 38(4): 367-383. doi: 10.1080/08927014.2022.2075739
    [42]
    李诣远, DAVID C M, MICHAEL E P. 基于Nextflow构建的宏条形码自动化分析流程EPPS[J]. 生物多样性, 2019, 27: 567-575. doi: 10.17520/biods.2018211
    [43]
    FURLAN E M, DAVIS J, DUNCAN R P. Identifying error and accurately interpreting environmental DNA metabarcoding results: a case study to detect vertebrates at arid zone waterholes[J]. Mol Ecol Resour, 2020, 20(5): 1259-1276. doi: 10.1111/1755-0998.13170
    [44]
    BURIAN A, MAUVISSEAU Q, BULLING M, et al. Improving the reliability of eDNA data interpretation[J]. Mol Ecol Resour, 2021, 21(5): 1422-1433. doi: 10.1111/1755-0998.13367
    [45]
    刘山林, 邱娜, 张纾意, 等. 基因组学技术在生物多样性保护研究中的应用[J]. 生物多样性, 2022, 30(10): 334-354. doi: 10.17520/biods.2022441
    [46]
    杨海乐, 吴金明, 张辉, 等. 大型河流中鱼类组成的eDNA监测效率: 以长江武汉江段为例[J]. 中国水产科学, 2021, 28(6): 796-807. doi: 10.12264/JFSC2021-0556
    [47]
    KUMAR G, REAUME A M, FARRELL E, et al. Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary[J]. PLoS One, 2022, 17(6): e026672.
  • Related Articles

    [1]QU Feihu, JIANG Xiaona, GE Yanlong, ZHAI Yushan, ZHANG Ling, WANG Jiyao, KOU Han, LI Chitao, HU Xuesong, SHI Xiaodan, JIA Zhiying. Research on feed protein requirement of Cyprinus carpio haematopterus[J]. South China Fisheries Science, 2024, 20(4): 124-132. DOI: 10.12131/20230234
    [2]LIU Jiaxing, GUO Huayang, ZHU Kecheng, LIU Baosuo, ZHANG Nan, XIAN Lin, ZHANG Dianchang. Effects of cysteine addition to low-fishmeal diets on metabolism of lipid and protein in juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2023, 19(4): 116-125. DOI: 10.12131/20230030
    [3]CAI Miaomiao, CHEN Shengjun, YANG Xianqing, MA Haixia, DENG Jianchao, LI Chunsheng, HU Xiao, QI Bo. Extraction and antioxidant activity of protein from Grateloupia livida[J]. South China Fisheries Science, 2020, 16(2): 99-106. DOI: 10.12131/20190232
    [4]LIU Caihua, ZHU Xinrong, ZHANG Jian. Effects of three kinds of non-muscle proteins on quality of Coregouns peled muscle during partially frozen storage[J]. South China Fisheries Science, 2018, 14(2): 102-109. DOI: 10.3969/j.issn.2095-0780.2018.02.014
    [5]YU Ermeng, WANG Guangjun, ZHANG Zhennan, LI Zhifei, YU Deguang, XIA Yun, GONG Wangbao, XIE Jun. Microstructure and texture characteristics analysis of grass carp (Ctenopharyngodon idellus) muscle at different stages of crispness[J]. South China Fisheries Science, 2017, 13(2): 128-134. DOI: 10.3969/j.issn.2095-0780.2017.02.016
    [6]LI Na, ZHAO Yongqiang, LI Laihao, YANG Xianqing, HAO Shuxian, WEI Ya, CEN Jianwei, ZHANG Hongjie. Change of muscle proteins in Nile tilapia fillets during iced storage[J]. South China Fisheries Science, 2016, 12(2): 88-94. DOI: 10.3969/j.issn.2095-0780.2016.02.013
    [7]FANG Jing, ZHU Jinhu, HUANG Hui, LI Laihao, YANG Xianqing, HAO Shuxian, SHI Hong. Texture changes of Penaeus vannamei muscle during iced storage[J]. South China Fisheries Science, 2012, 8(6): 80-84. DOI: 10.3969/j.issn.2095-0780.2012.06.012
    [8]QIU Zefeng, ZHANG Liang, ZENG Weicai, JIAN Zhuoying, GAO Jialong, LIU Shucheng. Effect of frozen storage on muscle texture of Litopenaeus vannamei[J]. South China Fisheries Science, 2011, 7(5): 63-67. DOI: 10.3969/j.issn.2095-0780.2011.05.010
    [9]XU Yong′an, WU Jingna, SU Jie, YANG Yehui. Technology of recovering soluble protein from surimi washings by chitosan flocculating method[J]. South China Fisheries Science, 2011, 7(3): 1-7. DOI: 10.3969/j.issn.2095-0780.2011.03.001
    [10]LIU Xingwang, XU Dan, ZHANG Haitao, LIANG Hai′ou. Optimal dietary protein requirement for juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2011, 7(1): 45-49. DOI: 10.3969/j.issn.2095-0780.2011.01.007
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 袁毅,姜启兴,高沛,杨方,余达威,许艳顺,夏文水. 即食鱼胶产品的杀菌工艺. 水产学报. 2024(02): 180-188 .
    2. 张熙晨,李静鹏,邓夏彬阳,许安芸,王明科,邓力. 蒸制表面传热系数测定及其对品质动力学的影响. 食品与发酵科技. 2023(01): 73-82 .
    3. 闫寒,崔震昆,宋慕波,范翠翠,刘英健. 蓝光对三文鱼的杀菌作用及品质影响研究. 食品安全质量检测学报. 2023(09): 146-152 .
    4. 杨明畅,马俪珍,李来好,杨贤庆,陈胜军,魏涯,王悦齐,李春生,赵永强. 蛋白质免疫印迹技术在水产品中的应用. 食品安全质量检测学报. 2021(20): 7914-7919 .

    Other cited types(1)

Catalog

    Article views (85) PDF downloads (31) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return