Citation: | CAI Runji, PENG Xiaohong, YE Shuangfu, ZHANG Tianchen, GAO Yuefang, LYU Junlin. Automatic counting of shrimp larvae based on probability density map model generated from front end and back end[J]. South China Fisheries Science, 2025, 21(1): 173-184. DOI: 10.12131/20240212 |
Shrimp larval counting is a fundamental operation for biomass estimation in shrimp farming and sales, and it is crucial for aquaculture management and yield enhancement. Due to the factors such as small size of shrimp larvae, significant occlusion, and varying density, the current automated counting methods are difficult to achieve accurate larval counting at certain densities. To address this issue, we propose a shrimp counting (SC) model for shrimp larval counting which combined frontend and backend counting network based on Bayesian probability distribution. This model primarily consists of a frontend module, an attention module and a backend module. The frontend module first extracts discriminative phenotypic features, while the attention module reorganizes these features to enhance local attention to the images. Secondly, the backend module generates a predicted probability density map for shrimp larval distribution. Thirdly, the Bayesian loss function is utilized to adjust the model parameters and improve the accuracy of shrimp larval counting. To validate the effectiveness of the proposed method, we constructed a shrimp larval counting dataset with two different density conditions and conducted multiple experimental comparisons on the dataset. The overall accuracy reached 93.325%, with mean absolute error and mean squared error being 96.304 and 154.567, respectively. Compared with the current mainstream counting methods [Black-Litterman (BL), Contextual Scene Recognition Network CSR-Net), Boosting Crowd Counting via Multifaceted Attention BCCMA], the proposed model exhibits the highest accuracy and the lowest loss. It applies to automated shrimp larval counting in hatcheries, sales and stocking scenarios.
[1] |
LIU S, ZENG X D, WHITTY M. A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight estimation in the field[J]. Comput Electron Agr, 2020, 173: 105360. doi: 10.1016/j.compag.2020.105360
|
[2] |
VASCONEZ J P, DELPIANO J, VOUGIOUKAS S, et al. Comparison of convolutional neural networks in fruit detection and counting: a comprehensive evaluation[J]. Comput Electron Agr, 2020, 173: 105348. doi: 10.1016/j.compag.2020.105348
|
[3] |
XU C, JIANG H Y, YUEN P, et al. MHW-PD: a robust rice panicles counting algorithm based on deep learning and multiscale hybrid window[J]. Comput Electron Agr, 2024, 173: 105375. doi: 10.1016/j.compag.2020.105375
|
[4] |
XU B B, WANG W S, FALZON G, et al. Automated cattle counting using Mask R-CNN in quadcopter vision system[J]. Comput Electron Agr, 2020, 171: 105300. doi: 10.1016/j.compag.2020.105300
|
[5] |
LI D L, MAO Z, PENG F, et al. Automatic counting methods in aquaculture: a review[J]. J World Aquacult Soc, 2020, 52(2): 269-283.
|
[6] |
ZHANG L, LI W S, LIU C H, et al. Automatic fish counting method using image density grading and local regression[J]. Comput Electron Agr, 2020, 179: 105844. doi: 10.1016/j.compag.2020.105844
|
[7] |
KESVARAKUL R, CHIANRABUTRA C, CHIANRABUTRA S. Baby shrimp counting via automated image processing[C]//Proceedings of the 9th International Conference on Machine Learning and Computing. ICMLC 2017. Singapore: Association for Computing Machinery. 2017: 352-256.
|
[8] |
SOLAHUDIN M, SLAMET W, DWI A S. Vaname (Litopenaeus vannamei) shrimp fry counting based on image processing method[C]//The 2nd International Conference on Agricultural Engineering for Sustainable Agricultural Production. AESAP 2017. Bogor, Indonesia: IOP Conference Series Earth and Environmental Science, 2018, 147(1): 012014.
|
[9] |
KAEWCHOTE J, JANYONG S, LIMPRASERT W. Image recognition method using Local Binary Pattern and the Random Forest classifier to count post larvae shrimp[J]. Agric Nat Resour, 2018: 371-376.
|
[10] |
AWALLUDIN E A, MUHAMMAD W N A W, ARSAD T N T, et al. Fish larvae counting system using image processing techniques[J]. J Physics: Conference Series, 2020, 1529(5): 052040. doi: 10.1088/1742-6596/1529/5/052040
|
[11] |
王书献, 张胜茂, 戴阳, 等. 利用声呐数据提取磷虾捕捞深度方法研究[J]. 南方水产科学, 2021, 17(4): 91-97. doi: 10.12131/20210020
|
[12] |
范秀梅, 杨胜龙, 张胜茂, 等. 基于栖息地指数的阿拉伯海鲐鱼渔情预报模型构建[J]. 南方水产科学, 2020, 16(4): 8-17. doi: 10.12131/20190255
|
[13] |
郑巧玲, 樊伟, 张胜茂, 等. 基于神经网络和VMS 的渔船捕捞类型辨别[J]. 南方水产科学, 2016, 12(2): 81-87. doi: 10.3969/j.issn.2095-0780.2016.02.012
|
[14] |
张佳泽, 张胜茂, 王书献, 等. 基于3-2D融和模型的毛虾捕捞渔船行为识别[J]. 南方水产科学, 2022, 18(4): 126-135. doi: 10.12131/20210263
|
[15] |
NGUYEN K T, NGUYEN C N, WANG C Y, et al. Two-phase instance segmentation for whiteleg shrimp larvae counting[C]//2020 IEEE International Conference on Consumer Electronics. ICCE 2020. Berlin, Germany: IEEE, 2020: 1-3.
|
[16] |
HONG K T, ABDULLAH S N H S, HASN M K, et al. Underwater fish detection and counting using mask regional convolutional neural network[J]. Water, 2022, 14(2): 222. doi: 10.3390/w14020222
|
[17] |
ARMALIVIA S, ZAINUDDIN Z, ACHMAD A, et al. Automatic counting shrimp larvae based you only look once (YOLO)[C]. 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), 2021: 1-4.
|
[18] |
LI X M, ZHAO Z Y, WU J Y, et al. Y-BGD: Broiler counting based on multi-object tracking[J]. Comput Electron Agr, 2022, 202: 107347. doi: 10.1016/j.compag.2022.107347
|
[19] |
SINDAGI V A, PATEL V M. Generating high-quality crowd density maps using contextual pyramid CNNs[C]//IEEE International Conference on Computer Vision, Venice, Italy: IEEE Xplore, 2017: 1879-1888
|
[20] |
LAINEZ S M D, GONZALES D B. Automated fingerlings counting using convolutional neural network[C]//2019 IEEE 4th International Conference on Computer and Communication Systems. ICCCS 2019. Singapore: IEEE, 2019: 67-72.
|
[21] |
范松伟, 林翔瑜, 周平. 基于改进的卷积神经网络的虾苗自动计数研究[J]. 渔业现代化, 2020, 47(6): 35-41. doi: 10.3969/j.issn.1007-9580.2020.06.006
|
[22] |
LEMPITSKY V, ZISSERMAN A. Learning to count objects in images[C]//Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6–9 December 2010. Vancouver, British Columbia, Canada: Curran Associates Inc, 2010: 23.
|
[23] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Sci, 2014, 1409: 1556. doi: 10.48550/arXiv.1409.1556
|
[24] |
MA Z H, WEI X, HONG X P, et al. Bayesian loss for crowd count estimation with point supervision[J]. CoRR, 2019, abs/1908.03684.
|
[25] |
LI F F, JIA D, LI K. ImageNet: constructing a large-scale image database[J]. J Vision, 2010, 9(8): 1037. doi: 10.1167/9.8.1037
|
[26] |
LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[J]. IEEE, 2018: 1091-1100.
|
[27] |
LIN H, MA Z H, JI R R, et al. Boosting crowd counting via multifaceted attention[J]. IEEE, 2022: 19628-19637.
|
[28] |
ZHANG L, ZHOU X H, LI B B, et al. Automatic shrimp counting method using local images and lightweight YOLOv4[J]. Biosyst Engin, 2022, 220: 39-54. doi: 10.1016/j.biosystemseng.2022.05.011
|
[29] |
SUN Y, ZHANG S M, SHI Y C, et al. YOLOv7-DCN-SORT: an algorithm for detecting and counting targets on Acetes fishing vessel operation[J]. Fish Res, 2024, 274: 106983. doi: 10.1016/j.fishres.2024.106983
|
[30] |
ZHANG Z Z, LI J W, SU C W, et al. A method for counting fish based on improved YOLOv8[J]. Aquac Engin, 2024, 107: 102450. doi: 10.1016/j.aquaeng.2024.102450
|
1. |
吴燕燕,王悦齐,张涛,王迪,郑镇雄. 不同致死条件对冷鲜石斑鱼肉品质的影响. 上海海洋大学学报. 2023(02): 377-386 .
![]() | |
2. |
王雪松,谢晶. 竹荚鱼浸渍冻结液配方的优化与应用效果. 食品与发酵工业. 2021(19): 195-200 .
![]() |