Citation: | YANG Jieqing, SUN Tao, YU Jinchen, WANG Yuekai, LI Sen, LI Xuanjin, ZHOU Jin, SHI Yunrong, CHEN Shuo, CHEN Lang, TIAN Wei, FU Jing, LI Lei, HU Haopeng. Analysis of spatial distribution characteristics of zooplankton and its influence by environmental factors in northwest Indian Ocean[J]. South China Fisheries Science, 2025, 21(2): 59-69. DOI: 10.12131/20240204 |
Zooplanktons, which are secondary producers in oceans, are essential for maintaining the abundance of fishery resources and marine ecological balance. To explore the spatial distribution characteristics of zooplankton and relationships with environmental factors in the northwest Indian Ocean, we analyzed the species, abundance and dominant species composition. Redundancy analysis model (RDA) was used to analyze the relationship between the environmental factors and the dominant species. Results shown that a total of 241 species belonged to 129 genera from seven phyla, including undefined species. The most dominant group of zooplankton was Copepoda (108 species). The total species and average abundance gradually decreased with increasing water depth. Distribution of the average number of species, total number of species and average abundance relatively balanced in terms of longitude. The average abundance decreased with increasing latitude. The dominant species groups were mainly Copepods, Ostracods and Chaetognaths, and the average abundance of dominant species gradually decreased with increasing water depth. Deepwater species were distributed in all stations basically. The number of deepwater species at stations at latitudes of 2.5°N−5.5°N were relatively richer, while the total abundance of deepwater species at stations at latitudes of 0.5°N−1.5°N were relatively higher. Deepwater species had an indicative effect on upwelling in this area. The main environmental factors affecting the distribution of dominant species were temperature, inorganic nitrogen and chlorophyll a.
[1] |
ZHOU S C, JIN B S, GUO L, et al. Spatial distribution of zooplankton in the intertidal marsh creeks of the Yangtze River Estuary, China[J]. Estuar Coast Shelf Sci, 2009, 85(3): 399-406. doi: 10.1016/j.ecss.2009.09.002
|
[2] |
杨杰青, 全为民, 史赟荣, 等. 东海近岸海域浮游动物群落时空分布[J]. 水产学报, 2018, 42(7): 1060-1076.
|
[3] |
CHEN H Q, LIU G X. Zooplankton community structure in the Yellow Sea and East China Sea in autumn[J]. Braz J Oceanogr, 2015, 63(4): 455-468. doi: 10.1590/S1679-87592015094506304
|
[4] |
YANG J Q, ZHANG D R, CHEN Y G, et al. Responding of zooplankton to environmental factor changes in the Changjiang River estuarine regions in spring-summer from 2016 to 2020[J]. J Oceanol and Limnol, 2024, 42(2): 544-559. doi: 10.1007/s00343-023-3033-5
|
[5] |
KODAMA T, WAGAWA T, IGUCHI N, et al. Spatial variations in zooplankton community structure along the Japanese coastline in the Japan Sea: influence of the coastal current[J]. Ocean Sci, 2018(14): 355-369.
|
[6] |
VALENTIN J L. Spatial structure of the zooplankton community in the Cabo Frio region (Brazil) influenced by coastal upwelling[J]. Hydrobiologia, 1984, 113: 183-199. doi: 10.1007/BF00026607
|
[7] |
YANG G, LI C L, WANG Y Q, et al. Spatial variation of the zooplankton community in the western tropical Pacific Ocean during the summer of 2014[J]. Cont Shelf Res, 2017, 135: 14-22. doi: 10.1016/j.csr.2017.01.009
|
[8] |
付菲雨, 卜心宇, 沈盎绿, 等. 西北太平洋亚热带海域浮游动物种类组成与分布[J]. 应用生态学报, 2022, 33(2): 544-550.
|
[9] |
PAGÈS F, GONZÁLEZ H E, RAMÓN M, et al. Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System, and potential predatory impact by Bassia bassensis (Siphonophora: Calycophorae)[J]. Mar Ecol Pro Ser, 2001, 210: 13-24. doi: 10.3354/meps210013
|
[10] |
张光涛, 孙松. 2003年夏季西北冰洋浮游动物群落结构和地理分布研究[J]. 海洋学报, 2011, 33(2): 146-156.
|
[11] |
LI K Z, YIN J Q, HUANG L M, et al. Spatio-temporal variations in the siphonophore community of the northern South China Sea[J]. Chin J Oceanol Limnol, 2013, 31(2): 312-326. doi: 10.1007/s00343-013-2058-6
|
[12] |
PALMA S, SILVA N. Epipelagic siphonophore assemblages associated with water masses along a transect between Chile and Easter Island (eastern South Pacific Ocean)[J]. J Plankton Res, 2006, 28(12): 1143-1151. doi: 10.1093/plankt/fbl044
|
[13] |
SCHOTT F A, McCREARY Jr. J P. The monsoon circulation of the Indian Ocean[J]. Prog Oceanogr, 2001, 51(1): 1-123. doi: 10.1016/S0079-6611(01)00083-0
|
[14] |
SHETYE S R, GOUVEIA A D, SHANKAR D, et al. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon[J]. J Geophys Res-Oceans, 1996, 101(C6): 14011-14025. doi: 10.1029/95JC03307
|
[15] |
GORDON A L. Interocean exchange of thermocline water[J]. J Geophys Res-Oceans, 1986, 91(C4): 5037-5047. doi: 10.1029/JC091iC04p05037
|
[16] |
KNAUSS J A, TAFT B A. Equatorial undercurrent of the Indian Ocean[J]. Science, 1964, 143(3604): 354-356. doi: 10.1126/science.143.3604.354
|
[17] |
AYERS J M, STRUTTON P G, COLES V J, et al. Indonesian through flow nutrient fluxes and their potential impact on Indian Ocean productivity[J]. Geophys Res Lett, 2014, 41(14): 5060-5067. doi: 10.1002/2014GL060593
|
[18] |
李开枝, 柯志新, 李刚, 等. 热带东北印度洋海域毛颚类的群落结构特征[J]. 热带海洋学报, 2014, 33(4): 40-46. doi: 10.3969/j.issn.1009-5470.2014.04.005
|
[19] |
TROTT C B, SUBRAHMANYAM B, CHAIGNEAU A, et al. Eddy tracking in the northwestern Indian Ocean during southwest monsoon regimes[J]. Geophys Res Lett, 2018, 45(13): 6594-6603. doi: 10.1029/2018GL078381
|
[20] |
SUN C J, WANG X D, ZHANG A M, et al. Statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean[J]. Acta Oceanol Sin, 2022, 41(5): 27-40. doi: 10.1007/s13131-021-1969-x
|
[21] |
叶旭昌, 陈新军, 田思泉, 等. 印度洋西北海域表层浮游动物数量组成及其分布[J]. 海洋水产研究, 2007, 28(4): 96-103.
|
[22] |
TIMONIN A G. The structure of plankton communities of the Indian Ocean[J]. Mar Biol, 1971, 9(4): 281-289. doi: 10.1007/BF00372822
|
[23] |
孙萍, 李艳, 潘玉龙, 等. 热带东印度洋春季浮游植物群落结构空间特征分析[J]. 海洋学报, 2020, 42(8): 76-88. doi: 10.3969/j.issn.0253-4193.2020.08.009
|
[24] |
薛冰, 孙军, 丁昌玲, 等. 2014年春季季风间期东印度洋赤道及其邻近海域硅藻群落[J]. 海洋学报, 2016, 38(2): 112-120. doi: 10.3969/j.issn.0253-4193.2016.02.011
|
[25] |
王琦, 孙萍, 辛明, 等. 东印度洋冬季印尼贯穿流影响区浮游植物群落结构特征[J]. 海洋与湖沼, 2023, 54(3): 732-746. doi: 10.11693/hyhz20221000265
|
[26] |
MADHUPRATAP M, GOPALAKRISHNAN T C, HARIDAS P, et al. Mesozooplankton biomass, composition and distribution in the Arabian Sea during the Fall Intermonsoon: implications of oxygen gradients[J]. Deep-Sea Res II, 2001, 48(6): 1345-1368.
|
[27] |
ELANGOVAN S S, GAUNS M, MULLA A B, et al. Spatial variability of microzooplankton in the central Arabian Sea during spring intermonsoon[J]. Mar Ecol, 2018, 39(6): 1-7.
|
[28] |
SACHINANDAN D, KUNAL C, SUGATA H. Ecosystem structure and trophic dynamics of an exploited ecosystem of Bay of Bengal, Sundarban Estuary, India[J]. Fish Sci, 2017, 83: 145-159. doi: 10.1007/s12562-016-1060-2
|
[29] |
BALIARSINGH S K, SRICHANDAN S, LOTLIKER A A, et al. Zooplankton distribution in coastal water off Gopalpur, North-western Bay of Bengal[J]. J Ocean Univ, 2018, 17(4): 879-889. doi: 10.1007/s11802-018-3414-0
|
[30] |
郭卓然, 冷天泽, 陆斗定, 等. 两种孔径网具对大洋微(小)型浮游植物调查结果的影响: 以西南印度洋海域第 34 次大洋春季航次为例[J]. 海洋与湖沼, 2022, 53(3): 637-644. doi: 10.11693/hyhz20211200316
|
[31] |
杨娟, 吕靖, 张荣欣, 等. 2013 年夏季西南印度洋表层浮游动物群落分布格局[J]. 海洋学研究, 2017, 35(3): 54-66. doi: 10.3969/j.issn.1001-909X.2017.03.007
|
[32] |
李开枝, 柯志新, 李刚, 等. 热带东北印度洋海域管水母类的群落结构特征[J]. 海洋学报, 2014, 36(8): 72-81. doi: 10.3969/j.issn.0253-4193.2014.08.008
|
[33] |
程夏雯, 张兰兰, 邱卓雅, 等. 北印度洋-南海表层水体中浮游动物胶体虫(放射虫)的物种多样性、生物地理及其季节变化[J]. 热带海洋学报, 2023, 42(2): 97-112. doi: 10.11978/2022047
|
[34] |
LIU H X, LI G, HUANG L M, et al. Community structure and abundance of tintinnids in the Bay of Bengal during the spring[J]. Am J Agr Biol Sci, 2012, 7(4): 407-411. doi: 10.3844/ajabssp.2012.407.411
|
[35] |
ZHANG C X, SUN J, WANG D X, et al. Tintinnid community structure in the eastern equatorial Indian Ocean during the spring inter-monsoon period[J]. Aquat Biol, 2017, 26: 87-100. doi: 10.3354/ab00677
|
[36] |
连光山, 王彦国, 孙柔鑫, 等. 中国海洋浮游桡足类多样性(上册)[M]. 北京: 海洋出版社, 2018: 35-647.
|
[37] |
BOLTOVSKOY D. South Atlantic zooplankton: volume 2[M]. Leiden: Backhuys Publishers, 1999: 869-1099.
|
[38] |
张光涛, 孙松. 普里兹湾的浮游动物群落生态研究I: 分布和结构[J]. 极地研究, 2000, 12(2): 89-96.
|
[39] |
EZHILARASAN P, KANURI V V, SATHISH KUMAR P, et al. Influence of environmental variables on the distribution and community structure of mesozooplankton in the coastal waters of the eastern Arabian Sea[J]. Reg Stud Mar Sci, 2020, 39: 101480.
|
[40] |
JITLANG I, PATTARAJINDA S, MISHRA, R. Composition, abundance and distribution of zooplankton in the Bay of Bengal[J]. Ecosyst-Based Fish Manag Bay Bengal, 2008: 65-92.
|
[41] |
党永欣. 东印度洋浮游动物群落及营养结构研究[D]. 天津: 天津科技大学, 2021: 8-28.
|
[42] |
钟琦. 2016年春季季风间期赤道东印度洋浮游植物群落结构的研究[D]. 济南: 山东大学, 2020: 20-41.
|
[43] |
王荣, 张鸿雁, 王克, 等. 小型桡足类在海洋生态系统中的功能作用[J]. 海洋与湖沼, 2002, 33(5): 453-460. doi: 10.3321/j.issn:0029-814X.2002.05.001
|
[44] |
杨光, 李超伦, 张永山, 等. 南极夏季南设得兰岛海域浮游动物群落垂直分布[J]. 极地研究, 2015, 27(1): 17-24.
|
[45] |
PAFFENHÖFER G A. Vertical zooplankton distribution on the northeastern Florida Shelf and its relation to temperature and food abundance[J]. J Plankton Res, 1983, 5(1): 15-33. doi: 10.1093/plankt/5.1.15
|
[46] |
CRIALES-HERNÁNDEZ M I, SCHWAMBORN R, GRACO M, et al. Zooplankton vertical distribution and migration of Central Peru in relation to the oxygen minimum layer[J]. Helgoland Mar Res, 2008, 62(Sup 1): 85-100.
|
[47] |
PADMAVATI G, HARIDAS P, NAIR K K C, et al. Vertical distribution of mesozooplankton in the central and eastern Arabian Sea during the winter monsoon[J]. J Plankton Res, 1998, 20(2): 343-354. doi: 10.1093/plankt/20.2.343
|
[48] |
龚玉艳, 杨玉滔, 范江涛, 等. 南海北部陆架斜坡海域夏季浮游动物群落的空间分布[J]. 南方水产科学, 2017, 13(5): 8-15. doi: 10.3969/j.issn.2095-0780.2017.05.002
|
[49] |
李开枝, 任玉正, 柯志新, 等. 南海东北部陆坡区中上层浮游动物的垂直分布[J]. 热带海洋学报, 2021, 40(2): 61-73. doi: 10.11978/2020061
|
[50] |
KOSOBOKOVA K N, HOPCROFT R R. Diversity and vertical distribution of mesozooplankton in the Arctic's Canada Basin[J]. Deep-Sea Res II, 2010, 57(1/2): 96-110.
|
[51] |
YANG G, LI C L, SONG S. Inter-annual variation in summer zooplankton community structure in Prydz Bay, Antarctica, from 1999 to 2006[J]. Polar Biol, 2011, 34(6): 921-932. doi: 10.1007/s00300-010-0948-z
|
[52] |
SPEEKMANN C L, BOLLENS S M, AVENT S R. The effect of ultraviolet radiation on the vertical distribution and mortality of estuarine zooplankton[J]. J Plankton Res, 22(12): 2325-2350.
|
[53] |
洪丽莎, 王春生, 周亚东, 等. 夏季西南印度洋叶绿素 a 分布特征[J]. 生态学报, 2012, 32(14): 4525-4534.
|
[54] |
杜明敏, 刘镇盛, 王春生, 等. 中国近海浮游动物群落结构及季节变化[J]. 生态学报, 2013, 33(17): 5407-5418.
|
[55] |
徐志强, 张光涛, 孙松. 2012 年夏季西北冰洋浮游动物群落特征[J]. 极地研究, 2016, 28(2): 181-193.
|
[56] |
卢伍阳, 马增龄, 徐兆礼, 等. 春季我国不同纬度河口浮游动物群落变化趋势[J]. 海洋学报. 2016, 38(10): 83-93.
|
[57] |
HAFFERSSAS A, SERIDJI R. Relationships between the hydrodynamics and changes in copepod structure on the Algerian Coast[J]. Zool Stud, 2010, 49(3): 353-366.
|
[58] |
CHENG X W, ZHANG L L, GAO F, et al. Biodiversity of zooplankton in 0–3000 m waters from the eastern Indian Ocean in spring 2019 based on metabarcoding[J]. Water Biol Secur, 2022, 1(1): 41-52.
|
[59] |
LI K Z, MA J, HUANG L M, et al. Environmental drivers of temporal and spatial fluctuations of mesozooplankton community in Daya Bay, Northern South China Sea[J]. J Ocean Univ, 2021, 20(4): 1013-1026. doi: 10.1007/s11802-021-4602-x
|
[60] |
TIMONIN A G, ARASHKEVICH E G, DRITS A V, et al. Zooplankton dynamics in the northern Benguela ecosystem, with special reference to the copepod Calanoides carinatus[J]. South Afr J Mar Sci, 1992, 12(1): 545-560. doi: 10.2989/02577619209504724
|
[61] |
YAMAGUCHI A, IKEDA T, WATANABE Y, et al. Vertical distribution patterns of pelagic copepods as viewed from the predation pressure hypothesis[J]. Zool Stud, 2004, 43(2): 475-485.
|
[62] |
王毅. 赤道中印度洋径向海流与热量输运径向结构的季节变化及动力机制[D]. 青岛: 中国海洋大学, 2014: 35-42.
|