YU Chuxia, GUO Huayang, LIN Yi, LIU Baosuo, LIU Bo, ZHU Tengfei, ZHANG Jianshe, ZHANG Dianchang. Early pigmented cell development and body color change of Platax teira[J]. South China Fisheries Science, 2025, 21(1): 96-104. DOI: 10.12131/20240180
Citation: YU Chuxia, GUO Huayang, LIN Yi, LIU Baosuo, LIU Bo, ZHU Tengfei, ZHANG Jianshe, ZHANG Dianchang. Early pigmented cell development and body color change of Platax teira[J]. South China Fisheries Science, 2025, 21(1): 96-104. DOI: 10.12131/20240180

Early pigmented cell development and body color change of Platax teira

More Information
  • Received Date: July 30, 2024
  • Revised Date: October 30, 2024
  • Accepted Date: November 21, 2024
  • Available Online: November 29, 2024
  • Platax teira has a particular pigmentation pattern. We used stereo microscope and inverted fluorescence microscope to continuously observe its post-embryonic development, as well as the morphology, body color changes, pigment cell types and distribution characteristics at different developmental stages, then we obtained its early developmental growth curve. The results show that the growth rate of P. teira of 1–24 days after hatching (DAH) was relatively slow, but having reached a rapid growth period since 26 DAH. In addition, the body surface of P. teira showed obvious color differences at different post-embryonic development stages. On 14 DAH, the red and yellow pigment cells developed significantly and became larger. On 28 DAH, the ventral fins, anal fins and dorsal fins were fully covered with pigments, mainly red pigments cells. The melanocytes and red pigment cells were intertwined on the body surface. On 21 DAH, the first obvious black stripe passed through the eye. On 30 DAH, white spots appeared on the abdomen, and a second black stripe appeared behind the gill cover. On 32 DAH, the second black stripe was obvious, and a slight stress reaction began to appear. Iridescent cells began to appear on the gill cover and below. On 46 DAH, a black stripe appeared on the head, trunk and tail, the dorsal, anal and pelvic fins turning black. The development of juvenile was complete and the body color was similar to that of adult fish. After the stress, the body color of juvenile turned black and the melanocytes were disperse and interwoven, almost covering up the yellow and red melanocytes. The results provide basic data for further studies on the body color regulation mechanism of P. teira.

  • [1]
    PROTAS M E, PATEL N H. Evolution of coloration patterns[J]. Ann Rev Cell Dev Biol, 2008, 24: 425-446. doi: 10.1146/annurev.cellbio.24.110707.175302
    [2]
    RODGERS G M, KELLEY J L, MORRELL L J. Colour change and assortment in the western rainbowfish[J]. Anim Behav, 2010, 79: 1025-1030. doi: 10.1016/j.anbehav.2010.01.017
    [3]
    YAN B, LIU B, ZHU C D, et al. MicroRNA regulation of skin pigmentation in fish[J]. J Cell Sci, 2013, 126: 3401-3408.
    [4]
    黄永政. 鱼类体色研究进展[J] . 水产学杂志, 2008, 21(1): 89-94.
    [5]
    DOOLEY C M, MONGERA A, WADERICH B, et al. On the embryonic origin of adult melanophores: the role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish[J]. ‌Development, 2013, 140(5): 1003-1013.
    [6]
    HULTNAM K A, JOHNSON S L. Differential contribution of direct-developing and stem cell-derived melanocytes to the zebrafish larval pigment pattern[J]. Dev Biol, 2010, 337(2): 425-431.
    [7]
    关献涛. 饲料中添加虾青素、叶黄素等4种物质对东星斑的生长、体色和抗氧化性的影响[D]. 上海: 上海海洋大学, 2017: 20-29.
    [8]
    王贤刚. 斑鳜体色变化观察[J]. 重庆水产, 2003(3): 30-31.
    [9]
    许沁宇. 瓯江彩鲤Scarb1基因与体色表型的相关性初步探究[D]. 上海: 上海海洋大学, 2022: 26-30.
    [10]
    陈红林. 基于基因组重测序和基因编辑技术的瓯江彩鲤黑斑体色遗传机制研究[D]. 上海: 上海海洋大学, 2019: 26-30.
    [11]
    BILECENOGLU M, KAYA M. A new alien fish in the Mediterranean Sea: Platax teira (Forsskal, 1775) (Osteichthyes: Ephippidae)[J]. Aquat Invasions, 2006, 1(2): 80-83.
    [12]
    曾辰. 尖翅燕鱼发育生物学研究[D]. 天津: 天津农学院, 2020: 6-11.
    [13]
    廖静. 人工养殖尖翅燕鱼性价比高观赏食用皆可投喂人工配合饲料[J]. 海洋与渔业, 2018(11): 62-63.
    [14]
    LIU B, GUO H Y, ZHU K C, et al. Nutritional compositions in different parts of muscle in the longfin batfish, Platax teira (Forsskal, 1775)[J]. J Appl Anim Res, 2019, 47(1): 403-407.
    [15]
    LI S S, XIE Z Z, CHEN P, et al. The complete mitochondrial genome of the Platax teira (Osteichthyes: Ephippidae)[J]. Mitochondrial DNA Part A, 2016, 27(2): 796-797.
    [16]
    ZENG C, LIU B S, ZHU K C, et al. Histological study on development of the digestive system of longfin batfish (Platax teira)[J]. Isr J Aquac-Bamidgeh, 2020, 72: 9.
    [17]
    LIU B, GUO H Y, ZHU K C, et al. Nutritional compositions indifferent parts of muscle in the longfin batfish, Platax teira (Forsskal, 1775)[J]. JAAR, 2019, 47(1): 403-407.
    [18]
    郭华阳, 刘明鉴, 高杰, 等. 尖翅燕鱼仔稚鱼脊柱及附肢骨骼系统的发育观察[J]. 南方水产科学, 2022, 18(6): 93-99.
    [19]
    殷名称. 鱼类早期生活史研究与其进展[J]. 水产学报, 1991, 15 (4): 348-358.
    [20]
    蔡瑞钰, 赵健蓉, 黄静, 等. 云南盘鳇仔稚鱼发育的初步观察[J]. 南方水产科学, 2018, 14(3): 120-125.
    [21]
    邝杰华, 陈刚, 马骞, 等. 军曹鱼的胚胎发育及仔稚鱼形态观察[J]. 水产学报, 2021, 45(11): 1814-1824.
    [22]
    严俊丽, 陈四清, 常青, 等. 圆斑星鲽仔稚鱼色素细胞发育和体色变化[J]. 水产学报, 2017, 41(5): 678-686.
    [23]
    谭泽宇, 李涛, 姜敬哲, 等. 喷点雪印小丑鱼的胚胎及仔、稚、幼鱼形态发育观察[J]. 南方水产科学, 2024, 20(2): 73-82.
    [24]
    田雪, 彭念念, 李学军. 硬骨鱼类黄色素细胞的研究进展[J]. 水产学报, 2022, 46(12): 2467-2475.
    [25]
    邓成. 豹纹鳃棘鲈色素细胞组织学及相关酶活分析[D]. 海南: 海南大学, 2020: 1-12.
    [26]
    李志雄, 盛军庆, 盛斌, 等. 鄱阳湖泥鳅黑斑形成观察及mitfa表达分析[J]. 渔业科学进展, 2024, 45(3): 117-128.
    [27]
    温思民. 豹纹鳃棘鲈早期体色发育调控机制的初步研究[D]. 湛江: 广东海洋大学, 2022: 19-27.
    [28]
    陈子钊, 梁秋璐, 许振民, 等. 红鳍笛鲷仔稚幼鱼形态与色素细胞发育[J]. 广东海洋大学学报, 2022, 42(5): 116-122.
    [29]
    区又君, 李加儿, 艾丽. 条石鲷早期发育阶段体表色素的变化和色素带的形成[J]. 水产学报, 2014, 38(10): 1722-1730.
    [30]
    迟雯丹, 宋静静, 郭文, 等. 绿鳍马面鲀早期色素细胞发育与体色变化[J]. 水产科学, 2022, 41(2): 218-225.
    [31]
    郭文, 于道德, 潘雷, 等. 六线鱼科鱼类特殊体色与繁殖特性[J]. 海洋科学, 2011, 35(12): 132-136.
    [32]
    贺国龙, 刘立鹤. 鱼类体色成因及其调控技术研究进展 (下)[J]. 水产科技情报, 2010, 37(3): 115-120, 124.
    [33]
    VISSIO P G, DARIAS M J, DI Y M P, et al. Fish skin pigmentation in aquaculture: the influence of rearing conditions and its neuroendocrine regulation [J]. Gen Comp Endocrinol, 2021, 301 (7): 1-12.
    [34]
    朱杰, 张秀梅, 高天翔. 体色异常褐牙鲆皮肤色素及鳞片发育的形态学研究[J]. 水生生物学报, 2004(6): 653-658.
    [35]
    RAMACHANDRAN V, SYLER C W, GREGORY R L, et al. Rapid adaptive camouflage in tropical flounders[J]. Nature, 1996, 379 (6568): 815-818.
    [36]
    周可欣, 文鑫, 邓成, 等. 豹纹鳃棘鲈体色变异的色素细胞差异分析[J]. 水生生物学报, 2021, 45(5): 1164-1170.
  • Cited by

    Periodical cited type(6)

    1. 蔡润基,彭小红,叶双福,张天晨,高月芳,吕俊霖. 基于前后端生成概率密度图模型的虾苗自动计数. 南方水产科学. 2025(01): 173-184 . 本站查看
    2. 宋一帆,张胜茂,张衡,唐峰华,张寒野,石永闯,崔雪森. X-ray在鱼体组织及微量元素检测中的应用. 应用光学. 2024(01): 166-176 .
    3. 李佳康,张胜茂,吴祖立,石永闯,唐峰华. 养殖水体中校色卡识别与色彩变化分析. 渔业信息与战略. 2024(01): 49-60 .
    4. 李鹏龙,张胜茂,沈烈,樊伟,顾家辉,邹国华. 具有双层路由注意力机制的YOLOv8血鹦鹉目标检测与追踪方法. 大连海洋大学学报. 2024(02): 318-326 .
    5. 赵斌,李成林. 水产业采捕装备发展现状与提升对策. 中国海洋经济. 2024(02): 143-156+221-222 .
    6. 孙月莹,陈俊霖,张胜茂,王书献,熊瑛,樊伟. 基于改进YOLOv7的毛虾捕捞渔船作业目标检测与计数方法. 农业工程学报. 2023(10): 151-162 .

    Other cited types(4)

Catalog

    Recommendations
    Study on artificial propagation and embryonic development regularity ofdiscogobio multilineatus
    WANG Yuesong et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Chromosome-level genome and characteristic analysis ofplatax teira
    OUYANG Yan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Perkinsusspp. infections between cultured and wild oysterscrassostrea hongkongensisandsaccostrea mordax
    ZHUANG Menghao et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    A method for estimating quantity oftrachinotus ovatusin marine cage aquaculture based on high-frequency horizontal mechanical scanning sonar image
    HU Jiazhen et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Molecular cloning and expression analysis of igmh and mhcⅱβ genes in the spotted sea bass (lateolabrax maculatus)
    LEI Lina et al., JOURNAL OF FISHERIES OF CHINA, 2025
    Evaluation of biointegrity of phytoplankton in typical sections of the lower reaches of yangtze river using edna technology
    ZHOU Yu-heng et al., JOURNAL OF SOUTHERN AGRICULTURE, 2025
    Distinguishing trajectories and drivers of vegetated ecosystems in china's loess plateau
    Wang, Zhuangzhuang et al., EARTHS FUTURE, 2024
    Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction
    Hou, Zhiqian et al., ADVANCED MATERIALS, 2023
    Two step synthesis of octreotide-doxorubicin conjugates based on disulfide bond linker
    ACTA CHIMICA SINICA
    Fatigue life prediction for orthotropic steel bridge decks welds using a gaussian variational bayes network and small sample experimental data
    RELIABILITY ENGINEERING & SYSTEM SAFETY
    Powered by
    Article views (332) PDF downloads (39) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return