WANG Feng, SONG Jialing, CHEN Shuaiyu, WANG Jingming, JIA Yudong. Alternation of gastric emptying, feeding behavior and digestive enzyme activities in Hexagrammos otakii[J]. South China Fisheries Science, 2024, 20(6): 10-18. DOI: 10.12131/20240160
Citation: WANG Feng, SONG Jialing, CHEN Shuaiyu, WANG Jingming, JIA Yudong. Alternation of gastric emptying, feeding behavior and digestive enzyme activities in Hexagrammos otakii[J]. South China Fisheries Science, 2024, 20(6): 10-18. DOI: 10.12131/20240160

Alternation of gastric emptying, feeding behavior and digestive enzyme activities in Hexagrammos otakii

More Information
  • Received Date: July 09, 2024
  • Revised Date: September 11, 2024
  • Accepted Date: October 09, 2024
  • Available Online: October 25, 2024
  • In order to determine the optimal feeding interval and frequency for Hexagrammos otakii, taking H. otakii [Average body mass of (73.19±6.68) g] as research object, we observed the proportions of stomach contents at different time after feeding, then compared the fitting degrees of the square root model, cubic model and linear model on the gastric emptying curve, and analyzed the changes of serum cortisol and glucose contents, intestinal and liver digestive enzyme activities after feeding. The results show that the gastric emptying of H. otakii followed a typical linear descending pattern. All the three models could fit the gastric emptying data, especially the cubic model fitted the best. 80% gastric emptying took about 15 h after feeding; basic emptying (97.7%) took about 18 h; complete emptying took about 19.7 h. The serum cortisol, glucose level, and the activities of intestinal and hepatic digestive enzymes (Amylase, chymotrypsin, and lipase) increased significantly from 0–6 h after feeding, peaking at 6th hour (p<0.05), but then decreased significantly. The intestinal amylase decreased to the minimum values at 15th hour after feeding (p<0.05). The activities of liver chymotrypsin, liver lipase and serum cortisol levels decreased to the minimum values at 18th hour after feeding. The instantaneous emptying rate was positively correlated with the contents of glucose, cortisol and digestive enzyme activities. In conclusion, the physiological critical point of gastric emptying and digestion is 15 h after feeding in H. otakii, and the optimal feeding frequency for H. otakii is twice a day.

  • [1]
    张波, 孙耀, 唐启升. 鱼类的胃排空率及其影响因素[J]. 生态学报, 2001, 21(4): 665-670. doi: 10.3321/j.issn:1000-0933.2001.04.025
    [2]
    JIA Y D, GAO Y T, JING Q Q, et al. Gastric evacuation and changes in postprandial blood biochemistry, digestive enzymes, and appetite-related genes in juvenile hybrid grouper (Epinephelus moara♀ × E. lanceolatus♂)[J]. Aquaculture, 2021, 530: 735721. doi: 10.1016/j.aquaculture.2020.735721
    [3]
    郭浩宇, 张秀梅, 张宗航, 等. 许氏平鲉仔、稚鱼的摄食特性及幼鱼胃排空率[J]. 水产学报, 2017, 41(2): 285-296.
    [4]
    DWYER K S, BROWN J A, PARRISH C, et al. Feeding frequency affects food consumption, feeding pattern and growth of juvenile yellowtail flounder (Limanda ferruginea)[J]. Aquaculture, 2002, 213(1/2/3/4): 279-292.
    [5]
    GILANNEJAD N, SILVA T, MARTÍNEZ-RODRÍGUEZ G, et al. Effect of feeding time and frequency on gut transit and feed digestibility in two fish species with different feeding behaviours, gilthead seabream and Senegalese sole[J]. Aquaculture, 2019, 513: 734438. doi: 10.1016/j.aquaculture.2019.734438
    [6]
    黄铭, 周演根, 陈薛伟杰, 等. 两种规格虹鳟胃排空模型和投喂频率的研究[J]. 中国海洋大学学报(自然科学版), 2005, 50(2): 33-39.
    [7]
    FLOWERDEW M W, GROVE D J. Some observations of the effects of body weight, temperature, meal size and quality on gastric emptying time in the turbot, Scophthalmus maximus (L.) using radiography[J]. J Fish Biol, 1979, 14(3): 229-238. doi: 10.1111/j.1095-8649.1979.tb03514.x
    [8]
    刘运刚. 水产养殖动物摄食及其营养调控[J]. 江西水产科技, 2018(4): 13-14. doi: 10.3969/j.issn.1006-3188.2018.04.005
    [9]
    ZHENG L Z, WANG Z Z, ZHANG B, et al. Rhodiola rosea L. improved intestinal digestive enzyme activities, inflammatory response, barrier, and microbiota dysbiosis in Lateolabrax maculatus juveniles fed with high-carbohydrate diets[J]. Fish Shellfish Immun, 2024, 146: 109362. doi: 10.1016/j.fsi.2024.109362
    [10]
    FOUNTOULAKI E, ALEXIS M N, NENGAS I, et al. Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.)[J]. Aquac Res, 2005, 36(13): 1243-1251. doi: 10.1111/j.1365-2109.2005.01232.x
    [11]
    WU Z H, TAN X G, WANG L J, et al. Study on artificial induction and early development of gynogenetic fat greenling Hexagrammos otakii[J]. Aquac Rep, 2022, 22: 100975. doi: 10.1016/j.aqrep.2021.100975
    [12]
    WANG W, ZHAN Y, PENG L, et al. Artemisinin counteracts Edwardsiella tarda-induced liver inflammation and metabolic changes in juvenile fat greenling Hexagrammos otakii[J]. Fish Shellfish Immun, 2023, 141: 109012. doi: 10.1016/j.fsi.2023.109012
    [13]
    ZHAN Y, GAO D X, PENG L et al. Hypoxia induces pyroptosis and inflammation in the liver of fat greenling (Hexagrammos otakii)[J]. Comp Immunol Rep, 2024, 6: 200146. doi: 10.1016/j.cirep.2024.200146
    [14]
    于燕光, 逯云召, 薄其康, 等. 不同温度对大泷六线鱼幼鱼耗氧率和窒息点的影响[J]. 河北渔业, 2020, 10(10): 20-23. doi: 10.3969/j.issn.1004-6755.2020.10.005
    [15]
    李成辉, 董宏标, 郑晓婷, 等. 春砂仁精油对尼罗罗非鱼幼鱼生长、消化、抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2023, 19(6): 51-59. doi: 10.12131/20230022
    [16]
    李明月, 高云红, 万金铭, 等. 黄条鰤幼鱼胃排空特征、消化酶活性及摄食调控基因表达[J]. 水产学报, 2022, 46(6): 906-916.
    [17]
    余方平, 许文军, 薛利建, 等. 美国红鱼的胃排空率[J]. 海洋渔业, 2007, 29(1): 49-52. doi: 10.3969/j.issn.1004-2490.2007.01.009
    [18]
    赵海祥. 投饲频率对瓦氏黄颡鱼幼鱼胃排空、生长效益及体组成的影响[D]. 南宁: 广西大学, 2014: 26-27.
    [19]
    孙晓锋, 冯健, 陈江虹, 等. 投喂频率对尼罗系吉富罗非鱼幼鱼胃排空、生长性能和体组成的影响[J]. 水产学报, 2011, 35(11): 1677-1683.
    [20]
    孙耀, 刘勇, 张波, 等. 渤、黄海4种小型鱼类摄食排空率的研究[J]. 海洋与湖沼, 2002, 33(6): 679-684.
    [21]
    高云红, 景琦琦, 黄滨, 等. 云龙石斑鱼胃排空特征和摄食消化特性研究[J]. 渔业科学进展, 2021, 42(1): 92-99.
    [22]
    曾令清, 李凤杰, 曹振东, 等. 南方鲇幼鱼的胃排空特征及其数学模型[J]. 水产学报, 2011, 35(2): 231-237.
    [23]
    刘荣欣, 周演根, 李哲坤, 等. 两种规格大西洋鲑胃排空特征及其模型分析[J]. 中国水产科学, 2022, 29(7): 1044-1051. doi: 10.12264/JFSC2021-0421
    [24]
    朱云海, 王跃斌, 胡则辉, 等. 日本黄姑鱼幼鱼的胃排空率[J]. 海洋渔业, 2013, 35(4): 448-452.
    [25]
    JOBLING M. Mathematical models of gastric emptying and the estimation of daily rates of food consumption for fish[J]. J Fish Biol, 1981, 19(3): 245-257. doi: 10.1111/j.1095-8649.1981.tb05829.x
    [26]
    SONAY F D, KARAL T. Gastric evacuation rates of jewelfish Hemichromis bimaculatus: effects of temperature, meal and fish sizes[J]. Fresen Environ Bull, 2021, 30(3): 2513-2521.
    [27]
    RUGGERONE G T. Gastric evacuation rates and daily ration of piscivorous coho salmon, Oncorhynchus kisutch Walbaum[J]. J Fish Biol, 1989, 34(3): 451-463. doi: 10.1111/j.1095-8649.1989.tb03326.x
    [28]
    OLSON R J, BOGGS C H. Apex predation by yellowfïn tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations[J]. Can J Fish Aquat Sci, 1986, 43(9): 1760-1775. doi: 10.1139/f86-220
    [29]
    刘顺涛, 郭学武, 陈政强. 方氏云鳚的排空率研究[J]. 海洋水产研究, 2002, 23(4): 20-23.
    [30]
    李可贵, 曹振东, 付世建. 鲇鱼幼鱼的胃排空率及其模型分析[J]. 重庆师范大学学报, 2009, 26(3): 8-11.
    [31]
    张鹏飞, 常青, 陈四清, 等. 绿鳍马面鲀幼鱼昼夜摄食节律及胃排空模型研究[J]. 渔业科学进展, 2020, 41(1): 104-111.
    [32]
    崔超, 禹娜, 龙丽娜, 等. 投饲频率对俄罗斯鲟幼鱼生长、消化酶活力和氨氮排泄的影响[J]. 海洋渔业, 2014, 36(1): 35-43. doi: 10.3969/j.issn.1004-2490.2014.01.006
    [33]
    GHASEMI N, IMANI A, NOORI F, et al. Ontogeny of digestive tract of Stellate sturgeon (Acipenser stellatus) from hatching to juvenile stage: digestive enzymes activity, stomach, and proximal intestine[J]. Aquaculture, 2020, 519: 734751. doi: 10.1016/j.aquaculture.2019.734751
    [34]
    冯硕恒, 米海峰, 刘迎隆, 等. 草鱼对饲料中碳水化合物利用的研究进展[J]. 中国饲料, 2016(5): 25-28.
    [35]
    区又君, 廖光勇, 李加儿. 波纹唇鱼消化道的形态学和组织学[J]. 热带海洋学报, 2012, 31(6): 86-92.
    [36]
    刘亚秋, 李新辉, 李跃飞, 等. 西江鲤仔稚鱼生长及消化酶活性变化[J]. 水生生物学报, 2019, 43(2): 362-366.
    [37]
    丛湘明, 李向, 华雪铭, 等. 大口黑鲈摄食含小肽饲料后的胃排空特征和消化酶活性变化[J]. 动物营养学报, 2022, 34(7): 4642-4656.
    [38]
    付新华, 孙谧, 孙世春. 大菱鲆消化酶的活力[J]. 中国水产科学, 2005, 12(1): 26-32.
    [39]
    吴婷婷, 朱晓鸣. 鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究[J]. 中国水产科学, 1994(2): 10-17.

    吴婷婷, 朱晓鸣. 鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究[J]. 中国水产科学, 1994(2): 10-17.
    [40]
    FISH G R. The comparative activity of some digestive enzymes in the alimentary canal of Tilapia and perch[J]. Hydrobiologia, 1960, 15(1/2): 161-178.
    [41]
    崔爱君, 徐永江, 柳学周, 等. 3种养殖鰤鱼消化相关酶活性的比较分析[J]. 渔业科学进展, 2022, 43(6): 102-110.
    [42]
    刘永士, 王建军, 朱建明, 等. 不同养殖密度下二龄刀鲚消化酶活性与分布特点[J]. 安徽农业大学学报, 2021, 48(2): 234-240.
    [43]
    DAS C, THRAYA M, VIJAYAN M M. Nongenomic cortisol signaling in fish[J]. Gen Comp Endocr, 2018, 265: 121-127. doi: 10.1016/j.ygcen.2018.04.019
    [44]
    PEDERZOLI A, MOLA L. The early stress responses in fish larvae[J]. Acta Histochem, 2016, 118(4): 443-449. doi: 10.1016/j.acthis.2016.03.001
    [45]
    NADERI F, MÍGUEZ J M, SOENGAS J L, et al. SIRT1 mediates the effect of stress on hypothalamic clock genes and food intake regulators in rainbow trout, Oncorhynchus mykiss[J]. Comp Biochem Phys A, 2019, 235: 102-111. doi: 10.1016/j.cbpa.2019.05.021
    [46]
    杨丽萍, 秦超彬, 郑文佳, 等. 鱼类的葡萄糖感知与糖代谢调节研究进展[J]. 水产学报, 2014, 38(9): 1639-1649.

Catalog

    Article views (453) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return