Citation: | LI Dongxu, ZOU Xiaorong, ZHOU Shuting. Spatio-temporal distribution of Thunnus albacares CPUE and its relationship with environmental factors in central Pacific Ocean[J]. South China Fisheries Science, 2024, 20(4): 68-76. DOI: 10.12131/20240047 |
Yellowfin tuna (Thunnus albacares) is one of the primary target species in China's tuna longline fishing industry. In order to improve fishing efficiency and promote sustainable use of resources, based on the longline production data of T. albacares in central Pacific Ocean from 2018 to 2022, combining with the environmental factors, such as temperature at different water layers, concentration of chlorophyll a, and salinity of sea surface (SSS), we analyzed the spatio-temporal distribution of the catch perunit of effort (CPUE) of T. albacares in that sea area and its relationship with environmental factors by constructing two models (GAM and nodeGAM). The results show that the peak season of T. albacares in the central Pacific Ocean was from May to July, and the CPUE was mainly distributed in the southern equatorial Pacific, with the highest tuna catches near 5°S. Compared with GAM [Bias explained rate 29.4%, Mean-square error (MSE) 0.149], the nodeGAM showed significantly better goodness-of-fit with a bias explained rate of 49.4% (68.02% enhancement), and the MSE reduced to 0.103 (Decrease of 30.87%). Both models indicate that T0 ≥27 °C, T100 of 15−20 °C, SSS of 34.2‰−35.2‰, and CHL-a concentration of 0.1−0.25 mg·m−3 were the suitable environmental ranges for T. albacares. Compared with GAM, nodeGAM has a better fitting effect and explanatory ability. According to the effect curves of the model output, nodeGAM can better reflect the nonlinear relationship between CPUE and environmental factors.
[1] |
杨胜龙, 张忭忭, 靳少非, 等. 中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系[J]. 海洋学报, 2015, 37(6): 78-87.
|
[2] |
SKIRTUN M, PILLING G M, REID C, et al. Trade-offs for the southern longline fishery in achieving a candidate South Pacific albacore target reference point[J]. Mar Policy, 2019, 100: 66-75. doi: 10.1016/j.marpol.2018.11.014
|
[3] |
王佚兮. 热带中西太平洋大眼金枪鱼、黄鳍金枪鱼的繁殖生物学研究[D]. 上海: 上海海洋大学, 2023: 4.
|
[4] |
孟晓梦, 叶振江, 王英俊. 世界黄鳍金枪鱼渔业现状和生物学研究进展[J]. 南方水产, 2007, 3(4): 74-80.
|
[5] |
联合国粮农组织. 2022年世界渔业和水产养殖状况: 努力实现蓝色转型[M]. Rome: FAO, 2022: 44.
|
[6] |
宋利明, 沈智宾, 周建坤, 等. 库克群岛海域海洋环境因子对黄鳍金枪鱼渔获率的影响[J]. 上海海洋大学学报, 2016, 25(3): 454-464. doi: 10.12024/jsou.20150901553
|
[7] |
王啸, 王佚兮, 刘文俊, 等. 热带中西太平洋金枪鱼延绳钓渔获物组成及其多样性[J]. 中国水产科学, 2022, 29(5): 732-743. doi: 10.12264/JFSC2021-0307
|
[8] |
费姣姣, 李成, 张健, 等. 中西太平洋海山特征对延绳钓渔业和围网渔业黄鳍金枪鱼CPUE的影响[J]. 南方水产科学, 2024, 20(2): 1-10. doi: 10.12131/20230200
|
[9] |
陈新军, 高峰, 官文江, 等. 渔情预报技术及模型研究进展[J]. 水产学报, 2013, 37(8): 1270-1280.
|
[10] |
FRANKLIN J. Mapping species distributions: spatial inference and prediction[M]. New York: Cambridge University Press, 2010: 105-112.
|
[11] |
丁鹏, 邹晓荣, 丁淑仪, 等. 基于CNN-BiLSTM模型的黄鳍金枪鱼渔获量与气候因子关系研究[J]. 南方水产科学, 2024, 20(2): 19-26. doi: 10.12131/20230190
|
[12] |
郑志辉. 基于贝叶斯方法、分位数回归和人工神经网络模型的黄鳍金枪鱼渔情预报模型比较[D]. 上海: 上海海洋大学, 2018: 37-39.
|
[13] |
张嘉容, 杨晓明, 戴小杰, 等. 南太平洋长鳍金枪鱼延绳钓渔获率与环境因子的关系研究[J]. 南方水产科学, 2020, 16(1): 69-77. doi: 10.12131/20190178
|
[14] |
官文江, 田思泉, 王学昉, 等. CPUE标准化方法与模型选择的回顾与展望[J]. 中国水产科学, 2014, 21(4): 852-862.
|
[15] |
杨胜龙, 史慧敏, 范秀梅, 等. 热带中西太平洋黄鳍金枪鱼栖息水层空间分析[J]. 中国农业科技导报, 2022, 24(1): 183-191.
|
[16] |
AKAIKE H, PARZEN E, TANABE K, et al. Factor analysis and AIC[M]. New York: Springer, 1987: 371-386.
|
[17] |
CHANG C H, CARUANA R, GOLDENBERG A. Node-gam: neural generalized additive model for interpretable deep learning [EB/OL]. (2022-05-16).https://arxiv.org/abs/2106.01613.
|
[18] |
RADENOVIC F, DUBEY A, MAHAJAN D. Neural basis models for interpretability[J]. Adv Neural Inf Process Syst, 2022, 35: 8414-8426.
|
[19] |
ZHANG W, BARR B, PAISLEY J. Gaussian Process Neural Additive Models [OL]. (2024-02-19).https://arxiv.org/abs/2402.12518.
|
[20] |
汪学清, 刘爽, 李秋燕, 等. 基于K折交叉验证的SVM隧道围岩分级判别[J]. 矿冶工程, 2021, 41(6): 126-128, 133. doi: 10.3969/j.issn.0253-6099.2021.06.031
|
[21] |
唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518-522.
|
[22] |
ROMENA N A. Factors affecting distribution of adult yellowfin tuna (Thunnus albacares) and its reproductive ecology in the Indian Ocean based on Japanese tuna longline fisheries and survey information[D]. Brussel: Vrije Universiteit Brussel, 2000: 23-28.
|
[23] |
苗振清, 黄锡昌. 黄鳍金枪鱼资源利用状况分析[J]. 浙江海洋学院学报(自然科学版), 2003, 22(1): 7-11.
|
[24] |
代丹娜, 刘洪生, 戴小杰, 等. ENSO现象与东太平洋黄鳍金枪鱼围网CPUE时空分布的关系[J]. 上海海洋大学学报, 2011, 20(4): 571-578.
|
[25] |
杨胜龙. 次表层环境对热带中西太平洋黄鳍金枪鱼垂直水层分布和延绳钓渔获率影响研究[D]. 上海: 上海海洋大学, 2021: 48-49.
|
[26] |
周为峰, 陈亮亮, 崔雪森, 等. 异常气候下温跃层及时空因子对中西太平洋黄鳍金枪鱼渔场分布的影响[J]. 中国农业科技导报, 2021, 23(10): 192-201.
|
[27] |
DEARY A L, MORET F S, ENGELS M, et al. Influence of central Pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species[J]. Pac Sci, 2015, 69(4): 461-475. doi: 10.2984/69.4.3
|
[28] |
PRINCE E D, GOODYEAR C P. Hypoxia-based habitat compression of tropical pelagic fishes[J]. Fish Oceanogr, 2006, 15(6): 451-464. doi: 10.1111/j.1365-2419.2005.00393.x
|
[29] |
PRINCE E D, LUO J, PHILLIP G C, et al. Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes[J]. Fish Oceanogr, 2010, 19(6): 448-462. doi: 10.1111/j.1365-2419.2010.00556.x
|
[30] |
王少琴, 许柳雄, 朱国平, 等. 中西太平洋金枪鱼围网的黄鳍金枪鱼CPUE时空分布及其与环境因子的关系[J]. 大连海洋大学学报, 2016, 29(3): 303-308.
|
[31] |
刘勇, 陈新军. 中西太平洋金枪鱼围网黄鳍金枪鱼产量的时空分布及与表温的关系[J]. 海洋渔业, 2007, 29(4): 296-301. doi: 10.3969/j.issn.1004-2490.2007.04.002
|
[32] |
于飞. 太平洋北赤道逆流的季节、年际变化特征和机制[D]. 青岛: 中国海洋大学, 2016: 11-32.
|
[33] |
BRIAND K, MOLONY B, LEHODEY P. A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean[J]. Fish Oceanogr, 2011, 20(6): 517-529. doi: 10.1111/j.1365-2419.2011.00599.x
|
[34] |
宋利明, 陈新军, 许柳雄. 大西洋中部黄鳍金枪鱼 (Thunnus albacares) 的垂直分布与有关环境因子的关系[J]. 海洋与湖沼, 2004, 35(1): 64-68 doi: 10.3321/j.issn:0029-814X.2004.01.010
|
[35] |
BRILL R W, DEWAR H, GRAHAM J B. Basic concepts relevant to heat transfer in fishes, and their use in measuring the physiological thermoregulatory abilities of tunas[J]. Environ Biol Fish, 1994, 40: 109-124. doi: 10.1007/BF00002538
|
[36] |
张春玲, 蒋逸, 王冰洋, 等. 中西太平洋黄鳍金枪鱼随附鱼群区域温度垂直结构的构建与初步分析[J]. 上海海洋大学学报, 2022, 31(1): 233-241. doi: 10.12024/jsou.20210403401
|
[37] |
张聪, 周为峰, 樊伟. 基于ADASYN和stacking集成的南太平洋黄鳍金枪鱼渔场预报模型研究[J]. 海洋渔业, 2023, 45(5): 544. doi: 10.3969/j.issn.1004-2490.2023.05.004
|
[38] |
SONG L M, WU Y P. Standardizing CPUE of yellowfin tuna (Thunnus albacares) longline fishery in the tropical waters of the northwestern Indian Ocean using a deterministic habitat-based model[J]. J Oceanogr, 2011, 67: 541-550. doi: 10.1007/s10872-011-0055-y
|
[39] |
SWARTZMAN G, STUETZLE W, KULMAN K, et al. Relating the distribution of pollock schools in the Bering Sea to environmental factors[J]. ICES J Mar Sci: J Cons, 1994, 51(4): 481-492. doi: 10.1006/jmsc.1994.1049
|
[40] |
CHEN I C, LEE PEIFEN, TZENG W N. Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors[J]. Fish Oceanogr, 2005, 14(1): 71-80. doi: 10.1111/j.1365-2419.2004.00322.x
|
[41] |
张艳萍, 乐家华, 闫周府. 南海金枪鱼类养殖区域分布研究[J]. 南方水产科学, 2023, 19(5): 48-57. doi: 10.12131/20230058
|
[1] | LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238 |
[2] | CUI Qiaoyan, LI Laihao, CHEN Tianyu, CHEN Shengjun, HUANG Hui, ZHAO Yongqiang, LI Chunsheng. Improvement of gel strength of fermented tilapia surimi by Lactiplantibacillus plantarum through inhibition of protein hydrolysis[J]. South China Fisheries Science, 2024, 20(4): 1-10. DOI: 10.12131/20240060 |
[3] | WANG Xin, LI Mengzhe, ZHANG Wei, KONG Yunfei, XIONG Zhiyu, SHI Tong, BAO Yulong, YUAN Li, ZHANG Shiyong, WANG Minghua, CHEN Xiaohui, GAO Ruichang. Evaluation of gel properties of heat-induced surimi of Ictalurus punctatus from four genealogies[J]. South China Fisheries Science, 2023, 19(3): 164-172. DOI: 10.12131/20220198 |
[4] | GE Mengmeng, SHEN Jiandong, TANG Xiaohang, XIA Wenshui, XU Yanshun. Optimization of thermal sterilization process for low-acid and acidified instant laver[J]. South China Fisheries Science, 2022, 18(6): 127-136. DOI: 10.12131/20220003 |
[5] | QI Bo, YANG Shaoling, WANG Yueqi, HU Xiao, YANG Xianqing, PAN Chuang, LI Laihao, WANG Lunan. Effect of carboxymethyl agar on gel properties of tilapia surimi[J]. South China Fisheries Science, 2022, 18(2): 83-89. DOI: 10.12131/20210311 |
[6] | LIU Fangfang, LIN Wanling, HAN Yingxue, LI Laihao, LI Chunsheng, YANG Xianqing, ZHOU Wenguo. Basic properties of surimi gel of five freshwater fish[J]. South China Fisheries Science, 2021, 17(2): 114-121. DOI: 10.12131/20200220 |
[7] | YIN Min, XIE Chongyou, PU Deyong, HUANG Jing, WANG Zhijian. Microstructure of oogenesis in Sinibrama taeniatus[J]. South China Fisheries Science, 2019, 15(2): 127-132. DOI: 10.12131/20180181 |
[8] | YU Shanshan, WANG Qinglin, DONG Yunwei. Effects of parent acclimation and heat-shock at gastrula on growth and development of sea cucumber larvae[J]. South China Fisheries Science, 2015, 11(4): 46-52. DOI: 10.3969/j.issn.2095-0780.2015.04.007 |
[9] | ZHANG Yuemei, BAO Yulong, LUO Yongkang, WANG Hang. Changes of biogenic amines and quality indicators of grass carp (Ctenpharyngodon idellus) during chilled storage and effect on biogenic amines during thermal processing[J]. South China Fisheries Science, 2013, 9(4): 56-61. DOI: 10.3969/j.issn.2095-0780.2013.04.010 |
[10] | HUANG Jiansheng, LU Weihua, ZOU Weili, WANG Yao. Determination of residual polychlorinated biphenyls (PCBs) in blubber of whale by gel permeation chromatography and gas chromatography/mass spectrometry[J]. South China Fisheries Science, 2009, 5(4): 9-12. DOI: 10.3969/j.issn.1673-2227.2009.04.002 |