Citation: | LI Tianbing, ZHENG Xiongsheng, RAN Xingyao. Design of a bionics-based Portunus crab claw gathering device[J]. South China Fisheries Science, 2024, 20(5): 126-135. DOI: 10.12131/20230256 |
In order to solve the problem of holding pike crabs after fishing, the crab claw of pike crabs need to be tied up individually, and crab claw gathering is important for crab claw binding. In this study, a bionics-based crab claw gathering device for pike crabs was designed, which is inspired by the natural movement of Portunus crab claws. After a careful analysis of the physiological structure of crab claw, we understood the characteristics of their activities well, and then designed this bionics-based crab claw closing device. The device tested the pincer closing for 10 Portunus crabs of different body masses, and 8 individuals were successfully closed. For the crabs with size of 133 mm3 and body mass over 130 g, the effect is better. Thus, the device provides a preliminary and effective solution to effectively solve the problem of Portunus crab claw closing.
[1] |
XU G Q, ZHU W B, XU L X. Gillnet selectivity for swimming crab Portunus trituberculatus in the East China Sea[J]. Fish Sci, 2021, 87(1): 31-38. doi: 10.1007/s12562-020-01488-0
|
[2] |
WANG Y B, GAO L, CHEN Y X. Assessment of Portunus trituberculatus (Miers, 1876) stock in the northern East China Sea[J]. Ind J Fish, 2018, 65(4): 28-35.
|
[3] |
PATEK S N, DUDEK D M, ROSARIO M V. From bouncy legs to poisoned arrows: elastic movements in invertebrates[J]. J Exp Biol, 2011, 214(12): 1973-1980. doi: 10.1242/jeb.038596
|
[4] |
蒲炜佳, 董世鹏, 张东旭, 等. 三疣梭子蟹池塘综合养殖系统浮游植物群落结构及其与环境因子的关系[J]. 中国水产科学, 2022, 29(4): 549-561.
|
[5] |
刘磊, 王春琳, 母昌考, 等. 野生、养殖和“科甬1号”群体三疣梭子蟹营养和风味品质比较分析[J]. 食品科学, 2017, 38(20): 55-62. doi: 10.7506/spkx1002-6630-201720009
|
[6] |
徐善良, 张薇, 严小军, 等. 野生与养殖三疣梭子蟹营养品质分析及比较[J]. 动物营养学报, 2009, 21(5): 695-702. doi: 10.3969/j.issn.1006-267x.2009.05.014
|
[7] |
HAMASAKI K, FUKUNAGA K, KITADA S. Batch fecundity of the swimming crab Portunus trituberculatus (Decapoda: Brachyura)[J]. Aquaculture, 2006, 253: 359-365. doi: 10.1016/j.aquaculture.2005.08.002
|
[8] |
SCHMIDT M, HAZERLI D, RICHTER S. Kinematics and morphology: a comparison of 3D-patterns in the fifth pereiopod of swimming and non-swimming crab species (Malacostraca, Decapoda, Brachyura)[J]. J Morphol, 2020, 281(12): 1547-1566. doi: 10.1002/jmor.21268
|
[9] |
杜岳峰, 傅生辉, 毛恩荣, 等. 农业机械智能化设计技术发展现状与展望[J]. 农业机械学报, 2019, 50(9): 1-17. doi: 10.6041/j.issn.1000-1298.2019.09.001
|
[10] |
梁喜佳, 张洪伟. 浅析机械设计制造及其自动化的特点与优势及发展趋势[J]. 科技创新与应用, 2016(6): 126.
|
[11] |
魏天琪, 郑雄胜, 李天兵, 等. 基于多组卷积神经网络的梭子蟹性别识别研究[J]. 南方水产科学, 2024, 20(1): 89-98.
|
[12] |
谷可欣, 李红, 李坤阳, 等. 软体仿生机械手柔性触觉感知技术研究进展[J]. 电子测量与仪器学报, 2022, 36(8): 13-27.
|
[13] |
曾钧生. 融合水下滑翔的两栖仿生机械蟹总体结构设计和游动仿真分析[D]. 深圳: 深圳大学, 2020: 9-23.
|
[14] |
杜昕, 秦玉芳, 吕琳, 等. 农业机械设计中的仿生设计运用研究[J]. 当代农机, 2023(2): 48, 50.
|
[15] |
TANG S, ZHU Y, YUAN S. Bionics-inspired structure boosts drag and noise reduction of rotating machinery[J]. J Bionic Engin, 2023, 20(6): 2797-2813. doi: 10.1007/s42235-023-00404-3
|
[16] |
BABITSKY L F, SOBOLEVSKY I V, KUKLIN V A. Bionic modelling of the working bodies of machines for surface tillage[C]. IOP Conference Series: Earth Environ Sci, 2020, 488(1): 012041. DOI: 10.1088/1755-1315/488/1/012041.
|
[17] |
TAWK C, ZHOU H, SARIYILDIZ E, et al. Design, modeling, and control of a 3D printed monolithic soft robotic finger with embedded pneumatic sensing chambers[J]. IEEE-ASME T Mech, 2020, 26(2): 876-887.
|
[18] |
CHEN Y H, CHUNG H, CHEN B, et al. A lobster-inspired bending module for compliant robotic applications[J]. Bioinspir Biomim, 2020, 15(5): 056009. doi: 10.1088/1748-3190/ab9c8d
|
[19] |
CHEN G M, QIAO L, WANG B C, et al. Bionic design of multi-toe quadruped robot for planetary surface exploration[J]. Machines, 2022, 10(10): 827. doi: 10.3390/machines10100827
|
[20] |
熙鹏, 丛茜, 叶绍波, 等. 真空吸盘的仿生设计与吸附性能分析[J/OL]. 吉林大学学报(工学版): 1-10 [2023-12-21]. https://doi.org/10.13229/j.cnki.jdxbgxb.20230200.
[2023-12-21]. https://doi.org/10.13229/j.cnki.jdxbgxb.20230200.
|
[21] |
王文谦, 马鹏磊, 李广浩, 等. 仿生机器鱼步态控制及闭环运动控制方法综述[J]. 中国舰船研究, 2024, 19(1): 29-45.
|
[22] |
GUO Z, PAN Y, WEE L B, et al. Design and control of a novel compliant differential shape memory alloy actuator[J]. Sensor Actuat A-Phys, 2015, 225: 71-80. doi: 10.1016/j.sna.2015.01.016
|
[23] |
CHIMAKURTHI S K, REUSS S, TOOLEY M, et al. ANSYS Workbench System Coupling: a state-of-the-art computational framework for analyzing multiphysics problems[J]. Eng Comput, 2018, 34: 385-411. doi: 10.1007/s00366-017-0548-4
|
[24] |
张乐, 苗虹, 何启源, 等. 基于ANSYS 的汽轮发电机定子绕组端部模态分析[J]. 重庆理工大学学报 (自然科学), 2020, 34(9): 252-258.
|
[25] |
张骉, 孟文俊, 张汉中, 等. 基于有限元方法的输送带模态分析研究[J]. 煤矿机械, 2021, 42(4): 91-94.
|
[26] |
FARHAN M, KARUPPANAN S, PATIL S S. Frictional contact stress analysis of spur gear by using finite element method[J]. Appl Mech Mater, 2015, 772: 159-163. doi: 10.4028/www.scientific.net/AMM.772.159
|
[27] |
SU L H, LU C, DENG G Y, et al. Microstructure and mechanical properties of AA5005/AA6061 laminated composite processed by accumulative roll bonding[J]. Metall Mater Trans B, 2014, 45: 515-522. doi: 10.1007/s11663-013-9869-x
|
[28] |
GAILLAC R, PULLUMBI P, COUDERT F X. ELATE: an open-source online application for analysis and visualization of elastic tensors[J]. J Phys-Condens Mat, 2016, 28(27): 275201. doi: 10.1088/0953-8984/28/27/275201
|
[29] |
VÖLKERINK O, KOSMANN J, SCHOLLERER M J, et al. Strength prediction of adhesively bonded single lap joints with the eXtended Finite Element Method[J]. J Adhesion, 2019, 95(5/6/7): 474-494.
|
[30] |
KRANJC T, SLAVIČ J, BOLTEŽAR M. A comparison of strain and classic experimental modal analysis[J]. J Vib Control, 2016, 22(2): 371-381. doi: 10.1177/1077546314533137
|
1. |
张凯,张麟,彭凌风,陈鑫,刘合刚,胡志刚. 基于性别差异的少棘巨蜈蚣蛋白组和转录组联合分析. 时珍国医国药. 2024(04): 892-898 .
![]() | |
2. |
韩财安,李安东,周美玉,廖怀生. 小龙虾幼苗培育关键技术. 江西水产科技. 2022(05): 30-31+34 .
![]() |