ZHENG Ruodan, CHEN Bingyao, ZHANG Shuai, MAI Junxiao, JIANG Peiwen, WANG Wenxin, LI Min. Preliminary exploration of Balaenoptera edeni edeni population distribution in surrounding waters of Weizhou Island based on environmental DNA[J]. South China Fisheries Science, 2024, 20(3): 36-46. DOI: 10.12131/20230254
Citation: ZHENG Ruodan, CHEN Bingyao, ZHANG Shuai, MAI Junxiao, JIANG Peiwen, WANG Wenxin, LI Min. Preliminary exploration of Balaenoptera edeni edeni population distribution in surrounding waters of Weizhou Island based on environmental DNA[J]. South China Fisheries Science, 2024, 20(3): 36-46. DOI: 10.12131/20230254

Preliminary exploration of Balaenoptera edeni edeni population distribution in surrounding waters of Weizhou Island based on environmental DNA

More Information
  • Received Date: December 26, 2023
  • Revised Date: March 23, 2024
  • Accepted Date: April 06, 2024
  • Available Online: April 14, 2024
  • Cetaceans, as apex predators in marine ecosystems, play a key role in maintaining ecological balance and stability. The Eden's whale (Balaenoptera edeni edeni) in Weizhou Island is the only baleen whales population that consistently appears in the waters near China. However, their specific distribution around Weizhou Island remains unclear. Due to their extensive range and active behavior, conducting stable tracking surveys via visual means is challenging. Thus, through environmental DNA (eDNA) technology, we assessed the distribution status of Eden's whales habitats around Weizhou Island during different periods (April 2022 and January 2023). The study reveals that in April, Eden's whales were visually observed and detected via eDNA in the hotspot distribution area (Between Weizhou Island and Xieyang Island) (n=3). They were also found in the southwest waters of Weizhou Island (n=2), with one site solely identified via eDNA. In January, Eden's whales were visually observed through eDNA in the hotspot distribution area (n=1) and detected through eDNA in the eastern waters off Weizhou Island (n=1). The findings indicate that compared with visual observation, eDNA technology exhibited higher sensitivity and could be utilized to verify the distribution of Eden's whales. Furthermore, potential hotspot distribution areas for Eden's whales were identified in the eastern and southwestern waters off Weizhou Island. In conclusion, this research validates the feasibility of utilizing eDNA technology for monitoring the distribution of Eden's whales around Weizhou Island. Besides, it provides further clarification regarding the distribution status of Eden's whales habitats around Weizhou Island, which supplies essential baseline information for the effective monitoring and scientific conservation of this population.

  • [1]
    HOYT E. Whale watching 2001: wordwide tourism number, expenditures, and expanding socioeconomic benefits[M]. Yarmouth Port, MA, USA: International Fund for Animal Welfare (IFAW), 2001: 13-14.
    [2]
    POLOCZANSKA E S, BROWN C J, SYDEMAN W J, et al. Global imprint of climate change on marine life[J]. Nat Clim Chang, 2013, 3(10): 919-925. doi: 10.1038/nclimate1958
    [3]
    PECL G T, ARAUJO M B, BELL J D, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being[J]. Science, 2017, 355: 6332.
    [4]
    WEELDEN C V, TOWERS J R, BOSKER T. Impacts of climate change on cetacean distribution, habitat and migration[J]. Clim Chang Ecol, 2021, 1: 100009.
    [5]
    LI M, WANG X X, HUNG S K, et al. Indo-Pacific humpback dolphins (Sousa chinensis) in the Moyang River Estuary: the western part of the world's largest population of humpback dolphins[J]. Aquat Conserv: Mar Freshw Ecosyst, 2019, 29(5): 798-808. doi: 10.1002/aqc.3055
    [6]
    ZURIEL Y E, AVSHALOM N L, RIJN I V, et al. Multi-year passive acoustic monitoring of coastal dolphins along the Israeli Mediterranean shallow shelf reveals the impact of marine fish farms and trawling patterns on their habitat utilization[J]. Mar Environ Res, 2023, 188: 106014. doi: 10.1016/j.marenvres.2023.106014
    [7]
    BOHMANN K, EVANS A, GILBERT M T, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J]. Trends Ecol Evol, 2014, 29(6): 358-367. doi: 10.1016/j.tree.2014.04.003
    [8]
    BENG K C, CORLETT R T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects[J]. Biodivers Conserv, 2020, 29(7): 2089-2121. doi: 10.1007/s10531-020-01980-0
    [9]
    KUMAR G, EBLE J E, GAITHER M R. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA[J]. Mol Ecol Resour, 2020, 20: 29-39. doi: 10.1111/1755-0998.13107
    [10]
    BESSEY C, JARMAN S N, SIMPSON T, et al. Passive eDNA collection enhances aquatic biodiversity analysis[J]. Commun Biol, 2021, 4: 236-248. doi: 10.1038/s42003-021-01760-8
    [11]
    TANG Y K, WU Y S, LIU K, et al. Investigating the distribution of the Yangtze finless porpoise in the Yangtze River using environmental DNA[J]. PLoS One, 2019, 14(8): e0221120. doi: 10.1371/journal.pone.0221120
    [12]
    VALSECCHI E, BYLEMANS J, GOODMAN S J, et al. Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates[J]. Environ DNA, 2020, 2(4): 460-476. doi: 10.1002/edn3.72
    [13]
    ZOU K S, CHEN J W, RUAN H T, et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling[J]. Sci Total Environ, 2020, 702: 134704. doi: 10.1016/j.scitotenv.2019.134704
    [14]
    CHEN M, HUANG S L, WU H P, et al. Occurrence of Bryde's whales, Balaenoptera edeni, in the northern Beibu Gulf, China[J]. Mar Mammal Sci, 2019, 35(4): 1643-1652. doi: 10.1111/mms.12607
    [15]
    CHEN B Y, ZHU L, JEFFERSON T A, et al. Coastal Bryde's whales' (Balaenoptera edeni) foraging area near Weizhou Island in the Beibu Gulf[J]. Aquat Mamm, 2019, 45(3): 274-279. doi: 10.1578/AM.45.3.2019.274
    [16]
    ZHANG Y Y, CHEN M, CHEN M, et al. Community-based population monitoring for large baleen whales: the case study of Bryde's whale in Beibu Gulf of China[J]. Integr Zool, 2021, 16(4): 626-635. doi: 10.1111/1749-4877.12525
    [17]
    吴采雯. 广西布氏鲸的种群动态及捕食策略研究[D]. 南京: 南京师范大学, 2021: 1-6.
    [18]
    何如, 黄梅丽, 罗红磊, 等. 近五十年来广西海岛的气候变化与气象灾害特征分析[J]. 气象研究与应用, 2015, 36(2): 31-35, 39. doi: 10.3969/j.issn.1673-8411.2015.02.006
    [19]
    黎广钊, 梁文, 农华琼, 等. 涠洲岛珊瑚礁生态环境条件初步研究[J]. 广西科学, 2004(4): 379-384.
    [20]
    YE J, COULOURIS G, ZARETSKAYA I, et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction[J]. BMC Bioinform, 2012, 13: 134. doi: 10.1186/1471-2105-13-134
    [21]
    LIU M M, LIN M L, LI S H. Species diversity and spatiotemporal patterns based on cetacean stranding records in China, 1950–2018[J]. Sci Total Environ, 2022, 822: 153651. doi: 10.1016/j.scitotenv.2022.153651
    [22]
    李红婷, 张帅, 邹柯姝, 等. 珠江河口水体环境DNA提取方法的建立及优化[J]. 南方水产科学, 2022, 18(3): 30-37. doi: 10.12131/20210304
    [23]
    VISSER F, MERTEN V J, BAYER T, et al. Deep-sea predator niche segregation revealed by combined cetacean biologging and eDNA analysis of cephalopod prey[J]. Sci Adv, 2021, 7: eabf5908. doi: 10.1126/sciadv.abf5908
    [24]
    王学昉, 孟维钊, 王丛丛, 等. 环境DNA技术在长江口水生生物监测中的应用潜力[J]. 应用海洋学学报, 2021, 40(3): 547-554.
    [25]
    PARSONS K M, EVERETT M, DAHLHEIM M, et al. Water, water everywhere: environmental DNA can unlock population structure in elusive marine species[J]. R Soc Open Sci, 2018, 5(8): 180537. doi: 10.1098/rsos.180537
    [26]
    SZÉKELY D, CORFIXEN N L, MØRCH L L, et al. Environmental DNA captures the genetic diversity of bowhead whales (Balaena mysticetus) in West Greenland[J]. Environ DNA, 2021, 3(1): 248-260. doi: 10.1002/edn3.176
    [27]
    BAKER C S, STEEL D, NIEUKIRK S, et al. Environmental DNA (eDNA) from the wake of the whales: droplet digital PCR for detection and species identification[J]. Front Mar Sci, 2018, 5: 133. doi: 10.3389/fmars.2018.00133
    [28]
    JERDE C L, MAHON A R, CHADDERTON W L, et al. "Sight-unseen" detection of rare aquatic species using environmental DNA[J]. Conserv Lett, 2011, 4(2): 150-157. doi: 10.1111/j.1755-263X.2010.00158.x
    [29]
    AKRE T S, PARKER L D, RUTHER E, et al. Concurrent visual encounter sampling validates eDNA selectivity and sensitivity for the endangered wood turtle (Glyptemys insculpta)[J]. PLoS One, 2019, 14(4): e0215586. doi: 10.1371/journal.pone.0215586
    [30]
    吴昀晟, 唐永凯, 李建林, 等. 环境DNA在长江江豚监测中的应用[J]. 中国水产科学, 2019, 26(1): 124-132.
    [31]
    FOOTE A D, THOMSEN P F, SVEEGAARD S, et al. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals[J]. PLoS One, 2012, 7(8): e41781. doi: 10.1371/journal.pone.0041781
    [32]
    WELTZ K, LYLE J M, OVENDEN J, et al. Application of environmental DNA to detect an endangered marine skate species in the wild[J]. PLoS One, 2017, 12(6): e0178124. doi: 10.1371/journal.pone.0178124
    [33]
    GOLDBERG C S, STRICKLER K M, PILLIOD D S. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms[J]. Biol Conserv, 2015, 183: 1-3. doi: 10.1016/j.biocon.2014.11.040
    [34]
    JIANG P W, ZHANG S, XU S N, et al. Comparison of environmental DNA metabarcoding and bottom trawling for detecting seasonal fish communities and habitat preference in a highly disturbed estuary[J]. Ecol Indic, 2023, 146: 109754. doi: 10.1016/j.ecolind.2022.109754
    [35]
    THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Mol Ecol, 2012, 21: 2565-2573. doi: 10.1111/j.1365-294X.2011.05418.x
    [36]
    ZHANG S, CAO Y T, CHEN B Y, et al. Assessing the potential use of environmental DNA for multifaceted genetic monitoring of cetaceans: example of a wandering whale in a highly disturbed bay area[J]. Ecol Indic, 2023, 148: 110125. doi: 10.1016/j.ecolind.2023.110125
    [37]
    DEINER K, BIK H M, MACHLER E, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities[J]. Mol Ecol, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
    [38]
    GOLDBERG C S, TURNER C R, DEINER K, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species[J]. Methods Ecol Evol, 2016, 7(11): 1299-1307. doi: 10.1111/2041-210X.12595
    [39]
    ALLENTOFT M E, COLLINS M, HARKER D, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils[J]. Proc Biol Sci, 2012, 279(1748): 4724-4733.
    [40]
    MAUVISSEAU Q, HARPER L R, SANDER M, et al. The multiple states of environmental DNA and what is known about their persistence in aquatic environments[J]. Environ Sci Technol, 2022, 56(9): 5322-5333. doi: 10.1021/acs.est.1c07638
    [41]
    MATHESON C D, GURNEY C, ESAU N, et al. Assessing PCR inhibition from humic substances[J]. Open Enzym Inhib J, 2010, 3: 38-45.
    [42]
    SHAW J L A, CLARKE L J, WEDDERBURN S D, et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system[J]. Biol Conserv, 2016, 197: 131-138. doi: 10.1016/j.biocon.2016.03.010
    [43]
    REES H C, MADDISON B C, MIDDLEDITCH D J, et al. Review: the detection of aquatic animal species using environmental DNA−a review of eDNA as a survey tool in ecology[J]. J App Ecol, 2014, 51(5): 1450-1459. doi: 10.1111/1365-2664.12306
    [44]
    刘玉香, 宋晓琛, 江香梅. 润楠ISSR-PCR优化反应体系建立及引物筛选[J]. 林业科技开发, 2013, 27(5): 24-28.
    [45]
    彭雷, 赵艳, 马银花. 基于巢式PCR的重叠延伸PCR优化[J]. 安徽农业科学, 2016, 44(20): 126-127.
    [46]
    SIGSGAARD E E, CARL H, MØLLER P R, et al. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples[J]. Biol Conserv, 2015, 183: 46-52. doi: 10.1016/j.biocon.2014.11.023
    [47]
    李莎, 刘雪清, 姜伟, 等. 环境DNA技术在宜昌江段四大家鱼自然繁殖中的应用[J]. 应用生态学报, 2021, 32(6): 2241-2248.
    [48]
    ZHANG Y Y, SUN X D, NONG Z W, et al. The first baleen whale marine protected area proposed for Bryde's whales in the Beibu Gulf, China[J]. Mar Mammal Sci, 2023: 1-17.
    [49]
    BUSTIN S A, BENES V, GARSON J A, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clin Chem, 2009, 55(4): 611-622. doi: 10.1373/clinchem.2008.112797
    [50]
    WHALE A S, HUGGETT J F, COWEN S, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation[J]. Nucleic Acids Res, 2012, 40(11): e82. doi: 10.1093/nar/gks203
  • Related Articles

    [1]HOU Diyao, LI Aoxue, LYU Shaoliang, DONG Jianyu, CHEN Ning, WANG Xuefeng. Analysis of phytoplankton community structure and its relationship with environmental factors in coastal waters of eastern Leizhou Peninsula during spring and autumn[J]. South China Fisheries Science, 2025, 21(1): 55-65. DOI: 10.12131/20240183
    [2]MA Jingjing, CHEN Haigang, ZHANG Zhe, TIAN Fei, TANG Zhenzhao, XIONG Qian, ZHANG Linbao. Interannual variation of fish communities and their environmental factors in Pearl River Estuary from 2018 to 2023[J]. South China Fisheries Science, 2024, 20(6): 62-73. DOI: 10.12131/20240139
    [3]YU Jie, ZOU Jianwei, CHEN Guobao. Characteristics of fish community structure and its relationship with environmental factors in marine ranching zone in southern area of Yintan in Guangxi[J]. South China Fisheries Science, 2024, 20(5): 81-90. DOI: 10.12131/20240102
    [4]ZHANG Xu, ZHOU Li, CAI Min, CUI Naxin, ZOU Guoyan, ZHAO Zhiyong, YUAN Quan, HUANG Weiwei, ZHANG Yalei. Analysis of phytoplankton community in aquaculture crab pond using morphological and metagenomics methods[J]. South China Fisheries Science, 2024, 20(1): 151-160. DOI: 10.12131/20230141
    [5]GONG Yuyan, XIAO Yayuan, XU Shannan, LIU Yong, YANG Yutao, HUANG Zirong, LI Chunhou. Zooplankton community structure in Hailing Bay and its relationship with primary environmental factors[J]. South China Fisheries Science, 2019, 15(6): 49-55. DOI: 10.12131/20180220
    [6]LI Xin, LAI Zini, YANG Wanling, WANG Chao. Water quality evaluation of Pearl River Delta based on environmental factors and phytoplankton[J]. South China Fisheries Science, 2019, 15(5): 25-34. DOI: 10.12131/20190020
    [7]HUANG Sheng, JIANG Jingzhe, WANG Jiangyong, XU Xin. Viral detection from oyster tissue using viral metagenomics technology[J]. South China Fisheries Science, 2017, 13(5): 39-46. DOI: 10.3969/j.issn.2095-0780.2017.05.006
    [8]CAO Kuan, ZHENG Jiao, WANG Zhiyong, LIU Xiande, CAI Mingyi. Genome size and physical length of chromosomes in Nibea albiflora[J]. South China Fisheries Science, 2015, 11(4): 65-70. DOI: 10.3969/j.issn.2095-0780.2015.04.010
    [9]CENG Shaokui, YANG Ping, CHEN Xiuhong. Study on the removal of fish odour and bitter from protein hydrolysates of tilapia by-products by microorganism fermentation[J]. South China Fisheries Science, 2009, 5(4): 58-63. DOI: 10.3969/j.issn.1673-2227.2009.04.011
    [10]ZHOU Haiping, LI Zhuojia, YANG Yingying, CHEN Yongqing. Effects of environmental factors on the growth of Lactobacillus spp[J]. South China Fisheries Science, 2006, 2(4): 65-67.
  • Cited by

    Periodical cited type(16)

    1. 李安,马建忠,任鹏,邵鑫斌. 槲皮素对赤点石斑鱼生长性能、抗氧化能力和肠道菌群的影响. 热带生物学报. 2025(01): 152-162 .
    2. 齐富刚,邹文瑞,魏冬霞,王权,吴建顾,卫少松,林阿朋,袁圣. 不同水平丁酸梭菌对大口黑鲈幼鱼生长、消化酶活性及抗氧化能力的影响. 中国饲料. 2025(04): 69-72 .
    3. 刘雨滢,杜婷,付奕博,叶鑫煜,闫佳慧,卢玉婷. 丁酸梭菌的功能及其在水产养殖业中的应用. 饲料研究. 2025(05): 159-162 .
    4. 刘军,吴海冰,许洲,程超,李艳华,褚旭东,胡佳,杨小亮. 微生物制剂对鲫鱼肠道微生物的影响. 饲料研究. 2024(03): 58-62 .
    5. 王迪,陈胜军,于刚,赵永强,吴燕燕,王悦齐. 不同养殖规格卵形鲳鲹品质差异性研究. 南方水产科学. 2024(02): 172-180 . 本站查看
    6. 徐晓莹,史文凯,张宁,卢波,李秀梅,张晓明,刘蓬. 丁酸梭菌对钝吻黄盖鲽幼鱼生长性能、肠道结构和肠道菌群的影响. 水产科技情报. 2024(03): 169-174 .
    7. 徐创文,蒋魁,虞为,林黑着,王鹏飞,赵超,刘曦瑶,杨铿. 丁酸梭菌对花鲈幼鱼生长性能、免疫消化及肠道菌群的影响. 南方农业学报. 2024(02): 366-377 .
    8. 楚云开,李建涛,韩淑敏. 丁酸梭菌在改善畜禽肠道健康方面的研究进展. 饲料研究. 2023(11): 176-178 .
    9. 徐亚飞. 丁酸梭菌在水产养殖中的研究及应用进展. 水产养殖. 2023(08): 18-23 .
    10. 李莹,张庆华,钟丽娟,胡琴琴,杜天宁,郑莉,章磊,赵新海. 丁酸梭菌对白羽肉鸡生长性能、免疫功能和肠道健康的影响. 动物营养学报. 2023(08): 5023-5035 .
    11. 吴杨,黄倩倩,虞为,徐创文,洪敏娜,蒋魁,麦晓勇,陈海谊,林黑着,杨铿. 饲料中添加丁酸梭菌对卵形鲳鲹幼鱼生长性能、血清生化指标及肠道菌群和短链脂肪酸含量的影响. 动物营养学报. 2023(09): 5904-5918 .
    12. 李旭男,陈秀梅,彭思博,林允杰,金笑延,孙佳鑫,王桂芹. 鱼类肠黏膜屏障功能、损伤机制及其营养调控的研究进展. 饲料研究. 2023(19): 126-129 .
    13. 侯廷龙,刘惠茹,凃彦芳,张佳颖,李春涛,迟庆生,吴家乐. 饲料中添加丁酸梭菌对草鱼生长性能、免疫力及抗嗜水气单胞菌的影响. 上海海洋大学学报. 2023(06): 1195-1204 .
    14. 李成辉,董宏标,郑晓婷,桂福坤,曾祥兵,明俊超,陈飞,陈健,张家松. 春砂仁精油对尼罗罗非鱼幼鱼生长、消化、抗氧化能力和血清生化指标的影响. 南方水产科学. 2023(06): 51-59 . 本站查看
    15. 王海瑞,莫文艳,赵红霞,黄文,郑春田,曹俊明. 饲料添加丁酸梭菌对黄颡鱼生长性能及血清生化指标、免疫功能和抗氧化能力的影响. 动物营养学报. 2022(08): 5295-5303 .
    16. 田娟,谢宁宁,肖文富,喻丽娟,汤立,邓桂芳,文华,李雪平. 灭活植物乳杆菌及其代谢物对草鱼生长性能和肠道健康的影响. 水产学报. 2022(10): 1980-1991 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return