Citation: | ZHU Xuanyi, ZHENG Xiaoting, XING Yifu, HUANG Jianhua, DONG Hongbiao, ZHANG Jiasong. Study on tributyrin enhancing anti periodic high temperature stress ability of gill tissue in Litopenaeus vannamei[J]. South China Fisheries Science, 2024, 20(3): 66-75. DOI: 10.12131/20230246 |
Periodic high temperature (PHT) has a significant effect on biological function of shrimps in aquaculture. Gill, as the respiratory and metabolic organ of shrimp, plays a key role in maintaining the osmotic balance in fish body. However, its function is easily disturbed by environmental changes such as high temperature. In order to investigate effective strategies against PHT in shrimp, we investigated the effects of tributyrin (TB) on the morphology and physiological function of gill tissue of Litopenaeus vannamei under PHT [(34±1) ℃, 7 d] stress. The results show that PHT stress caused significant gill tissue damage and induced oxidative stress, which in turn caused endoplasmic reticulum stress, apoptosis and osmotic regulation dysfunction. With different feeding strategies (Feeding tributyrin for 7 d before stress, feeding tributyrin every day including 7 stressed days, and feeding tributyrin for 7 d after stress), the degree of gill tissue damage decreased significantly, so did the level of oxidative stress. In addition, tributyrin positively regulated the relative expression levels of oxidative stress, endoplasmic reticulum stress, apoptosis and osmoregulation genes which were induced by PHT. In particular, daily feeding tributyrin was effective in maintaining the morphological integrity of gill tissues and stable physiological functions.
[1] |
LU Q P, BO F, LING X J, et al. The effect of temperature on selected immune parameters of the white shrimp, Litopenaeus vannamei[J]. J World Aquac Soc, 2007, 38(2): 326-332. doi: 10.1111/j.1749-7345.2007.00105.x
|
[2] |
曲旻, 谭建, 栾生, 等. 凡纳滨对虾幼虾耐高温性状的遗传力评估[J]. 水产科学, 2023, 42(5): 805-812.
|
[3] |
张宗锋. 以湛江、茂名海南为例探究我国凡纳滨对虾、罗非鱼养殖现状及面临的问题[D]. 上海: 上海海洋大学, 2012: 30.
|
[4] |
朱孟凯, 姚翠鸾. 温度胁迫对凡纳滨对虾肝胰腺氧代谢及能量代谢的影响[J]. 水产学报, 2015, 39(5): 669-678.
|
[5] |
熊大林, 段亚飞, 陈成勋, 等. 高温与氨氮复合胁迫对凡纳滨对虾渗透调节的影响[J]. 水产科学, 2021, 40(4): 475-482.
|
[6] |
MAGALLON B, SERVIN V, PORTILLO C, et al. Litopenaeus vannamei (Boone) post-larval survival related to age, temperature, pH and ammonium concentration[J]. Aquac Res, 2006, 37(5): 492-499. doi: 10.1111/j.1365-2109.2006.01455.x
|
[7] |
熊大林, 段亚飞, 徐敬明, 等. 凡纳滨对虾鳃组织对高温和氨氮胁迫的生理响应[J]. 南方农业学报, 2020, 51(9): 2296-2303. doi: 10.3969/j.issn.2095-1191.2020.09.031
|
[8] |
徐煜, 徐武杰, 文国樑, 等. 颤藻浓度和水温对凡纳滨对虾响应颤藻粗提液毒性的影响[J]. 南方水产科学, 2017, 13(1): 26-32. doi: 10.3969/j.issn.2095-0780.2017.01.004
|
[9] |
DUAN Y F, XIONG D L, WANG Y, et al. Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei[J]. Sci Total Environ, 2021, 754: 141867. doi: 10.1016/j.scitotenv.2020.141867
|
[10] |
GONZÁLEZ R, DÍAZ F, LICEA A, et al. Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures[J]. J Therm Biol, 2010, 35(5): 218-224. doi: 10.1016/j.jtherbio.2010.05.004
|
[11] |
JIA X Y, ZHONG D S, ZHANG D, et al. Energy metabolic enzyme responses of Litopenaeus vannamei to thermal stress: a comparative study in freshwater and seawater conditions[J]. Aquac Int, 2018, 26(4): 1067-1081. doi: 10.1007/s10499-018-0268-9
|
[12] |
ANDRÉS C, PÉREZ D, ANDRÉS J, et al. Superoxide anion chemistry-its role at the core of the innate immunity[J]. Int J Mol Sci, 2023, 24(3): 1841. doi: 10.3390/ijms24031841
|
[13] |
郑欣, 徐树德, 艾庆辉, 等. 三丁酸甘油酯对动物生长和肠道屏障功能的影响及其作用机制[J]. 动物营养学报, 2018, 30(5): 1668-1675. doi: 10.3969/j.issn.1006-267x.2018.05.009
|
[14] |
崔君. 三丁酸甘油酯缓解奶牛热应激效果的研究[D]. 长春: 吉林大学, 2020: 63-68.
|
[15] |
RAIRAT T, PHANSAWAT P, KEETANON A, et al. Effects of tributyrin on the growth performance, survival, tolerance to hypoxic stress, and nutrient digestibility of Pacific white shrimp, Litopenaeus vannamei, fed different levels of soybean meal[J]. J World Aquac Soc, 2023, 54(6): 1468-1481. doi: 10.1111/jwas.13016
|
[16] |
LEE C, SHIN J, FEYAERTS J, et al. Effects of dietary supplementation of monobutyrin and tributyrin on growth, feed efficiency, innate immunity, digestibility and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio harveyi[J]. Aquac Nutr, 2021, 27(3): 771-781. doi: 10.1111/anu.13222
|
[17] |
HU Y C, CHU K F, YANG W K, et al. Na+, K+-ATPase β1 subunit associates with α1 subunit modulating a "higher-NKA-in-hyposmotic media" response in gills of euryhaline milkfish, Chanos chanos[J]. J Comp Physiol B, 2017, 187(7): 995-1007. doi: 10.1007/s00360-017-1066-9
|
[18] |
ABDEL L, ABDEL T, DAWOOD M, et al. Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: a review[J]. Rev Fish Sci Aquac, 2020, 28(4): 421-448. doi: 10.1080/23308249.2020.1758899
|
[19] |
SU J, HE L, ZHANG N N, et al. Evaluation of tributyrin lipid emulsion with affinity to low-density lipoprotein: pharmacokinetics in adult male Wistar rats and cellular activity on Caco-2 and HepG2 cell lines[J]. J Pharmacol Exp Ther, 2006, 316(1): 62-70. doi: 10.1124/jpet.105.090464
|
[20] |
WANG J P, ZHANG H Y, BAI S P, et al. Dietary tributyrin improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders[J]. Poult Sci, 2021, 100(11): 101429. doi: 10.1016/j.psj.2021.101429
|
[21] |
DUAN Y F, LU Z J, ZENG S M, et al. Effects of dietary arachidonic acid on growth, immunity and intestinal microbiota of Litopenaeus vannamei under microcystin-LR stress[J]. Aquaculture, 2022, 549: 737780. doi: 10.1016/j.aquaculture.2021.737780
|
[22] |
吴加莹, 戴明姝, 刘志刚, 等. 温度对织锦巴非蛤稚贝生存和生长的影响[J]. 南方水产科学, 2023, 19(2): 62-69. doi: 10.12131/20220155
|
[23] |
于姗姗, 王青林, 董云伟. 亲本高温驯化和囊胚期热应激对刺参幼体生长、发育影响的初步研究[J]. 南方水产科学, 2015, 11(4): 46-52. doi: 10.3969/j.issn.2095-0780.2015.04.007
|
[24] |
贾艳丽, 王江勇, 刘广锋, 等. 高温胁迫对皱纹盘鲍幼鲍生长和成活的影响[J]. 南方水产科学, 2015, 11(2): 96-100. doi: 10.3969/j.issn.2095-0780.2015.02.014
|
[25] |
ISLAM S, ZAHANGIR M, ASHAF-UD-DOULAH M, et al. Extreme warm acclimation temperature alters oxygen consumption, micronucleus formation in erythrocytes, and gill morphology of rohu (Labeo rohita) fingerlings[J]. Fish Physiol Biochem, 2020, 46(6): 2323-2330. doi: 10.1007/s10695-020-00886-6
|
[26] |
孟德龙, 申奔龙, 白万强, 等. 缢蛏热休克转录因子1 (HSF1) 基因克隆、组织表达及功能[J]. 南方水产科学, 2020, 16(5): 115-122. doi: 10.12131/20190164
|
[27] |
JIANG S, ZHOU F, YANG Q B, et al. Impact of temperature stress on oxygen and energy metabolism in the hepatopancreas of the black tiger shrimp, Penaeus monodon (Crustacea: Decapoda: Penaeidae)[J]. Pak J Zool, 2018, 51: 92146545.
|
[28] |
KADIISKA M, GLADEN B, BAIRD D, et al. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning?[J]. Free Radic, 2005, 38(6): 698-710. doi: 10.1016/j.freeradbiomed.2004.09.017
|
[29] |
DUAN Y F, ZHANG Y, DONG H B, et al. Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus[J]. J Therm Biol, 2017, 66: 93-100. doi: 10.1016/j.jtherbio.2017.04.004
|
[30] |
JUNGHARE M, SUBUDHI S, LAL B. Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters[J]. Int J Hydrogy, 2012, 37(4): 3160-3168. doi: 10.1016/j.ijhydene.2011.11.043
|
[31] |
PAO H P, LIAO W I, TANG S E, et al. Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via up-regulating Claudin-4 expression[J]. Front Immunol, 2021, 12: 674316. doi: 10.3389/fimmu.2021.674316
|
[32] |
CHUNG Y, KIM J, YOO Y. A novel protein, Romo1, induces ROS production in the mitochondria[J]. Biochem Biophys Res Commun, 2006, 347(3): 649-655. doi: 10.1016/j.bbrc.2006.06.140
|
[33] |
BRAZÃO C, KRACIZY R, DUTRA F, et al. Combined and isolated effects of ammonia and nitrite on Amazon River prawn Macrobrachium amazonicum (Heller, 1862) juveniles[J]. Aquaculture, 2021, 533: 736204. doi: 10.1016/j.aquaculture.2020.736204
|
[34] |
蒋魁, 胡晓娟, 徐创文, 等. 裂褶菌多糖对凡纳滨对虾生长、免疫和肠道菌群的影响[J]. 南方水产科学, 2023, 19(5): 95-103. doi: 10.12131/20230041
|
[35] |
ZHENG J, CAO J, MAO Y, et al. Effects of thermal stress on oxidative stress and antioxidant response, heat shock proteins expression profiles and histological changes in Marsupenaeus japonicus[J]. Ecol Indic, 2019, 101: 780-791. doi: 10.1016/j.ecolind.2018.11.044
|
[36] |
赵楠, 肖雪, 曹兰秀. 内质网应激在细胞自噬调控中的作用及其分子机制[J]. 生理科学进展, 2023, 54(5): 426-432.
|
[37] |
史进选, 傅明骏, 赵超, 等. 斑节对虾GRP94基因的克隆及其在不同应激条件下的表达与分析[J]. 南方水产科学, 2016, 12(5): 61-70. doi: 10.3969/j.issn.2095-0780.2016.05.008
|
[38] |
XU J, RUAN L, SHI H. eIF2α of Litopenaeus vannamei involved in shrimp immune response to WSSV infection[J]. Fish Shellfish Immunol, 2014, 40(2): 609-615. doi: 10.1016/j.fsi.2014.08.016
|
[39] |
LEE A. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress[J]. Methods, 2005, 35(4): 373-381. doi: 10.1016/j.ymeth.2004.10.010
|
[40] |
ZHAO X Q, LI L L, LI C J, et al. Heat stress-induced endoplasmic reticulum stress promotes liver apoptosis in largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2022, 546: 737401. doi: 10.1016/j.aquaculture.2021.737401
|
[41] |
NUEZ-ORTIN W, CARTER C, NICHOLS P, et al. Liver proteome response of pre-harvest Atlantic salmon following exposure to elevated temperature[J]. BMC Genom, 2018, 19(1): 133. doi: 10.1186/s12864-018-4517-0
|
[42] |
高杰, 郭华阳, 刘明鉴, 等. 无乳链球菌感染对卵形鲳鲹脾脏的损伤及细胞凋亡相关基因表达的影响[J]. 南方水产科学, 2022, 18(6): 44-51. doi: 10.12131/20220099
|
[43] |
JIANG S Q, ZHANG Z W, YU F M, et al. Ameliorative effect of low molecular weight peptides from the head of red shrimp (Solenocera crassicornis) against cyclophosphamide-induced hepatotoxicity in mice[J]. J Funct, 2020, 72: 104085. doi: 10.1016/j.jff.2020.104085
|
[44] |
WANG J, REN R M, YAO C. Oxidative stress responses of Mytilus galloprovincialis to acute cold and heat during air exposure[J]. Ocean Coast Manag, 2018, 84: 285-292.
|
[45] |
JIA Y D, CHEN X T, WANG Z Y, et al. Physiological response of juvenile turbot (Scophthalmus maximus L.) during hyperthermal stress[J]. Aquaculture, 2020, 529: 735645. doi: 10.1016/j.aquaculture.2020.735645
|
[46] |
HOU Y Q, WANG L, DAN Y, et al. Dietary supplementation with tributyrin alleviates intestinal injury in piglets challenged with intrarectal administration of acetic acid[J]. Br J Nutr, 2014, 111(10): 1748-1758. doi: 10.1017/S0007114514000038
|
[47] |
CLARKE K, FEINMAN R, HARRISON L. Tributyrin, an oral butyrate analogue, induces apoptosis through the activation of caspase-3[J]. Cancer Lett, 2001, 171(1): 57-65. doi: 10.1016/S0304-3835(01)00574-2
|
[48] |
CHARMANTIER G. Ontogeny of osmoregulation in crustaceans: a review[J]. Invertebr Reprod Dev, 1998, 33(2/3): 177-190. doi: 10.1080/07924259.1998.9652630
|
[49] |
苏家齐, 祝华萍, 朱长波, 等. 盐度和钠离子/钾离子对凡纳滨对虾幼虾存活与组织结构的影响[J]. 南方水产科学, 2021, 17(5): 45-53.
|
[50] |
HUANG Y H, LIU Z Q, LI Y M, et al. Cloning and characterisation of Na+/K+-ATPase and carbonic anhydrase from oriental river prawn Macrobrachium nipponense[J]. Int J Biol Macromol, 2019, 129: 809-817. doi: 10.1016/j.ijbiomac.2019.02.098
|
[51] |
FINN R, CERDÀ J. Evolution and functional diversity of aquaporins[J]. Biol Bull, 2015, 229(1): 6-23. doi: 10.1086/BBLv229n1p6
|