CEN Jianwei, CHEN Chen, YAO Shipeng, HUANG Hui, HAO Shuxian, WEI Ya, YANG Shaoling, HE Jingyi, WANG Tian. Advances in multi-omics study of environmental stress in fish during temporary breading and transportation[J]. South China Fisheries Science, 2024, 20(3): 173-180. DOI: 10.12131/20230231
Citation: CEN Jianwei, CHEN Chen, YAO Shipeng, HUANG Hui, HAO Shuxian, WEI Ya, YANG Shaoling, HE Jingyi, WANG Tian. Advances in multi-omics study of environmental stress in fish during temporary breading and transportation[J]. South China Fisheries Science, 2024, 20(3): 173-180. DOI: 10.12131/20230231

Advances in multi-omics study of environmental stress in fish during temporary breading and transportation

More Information
  • Received Date: November 24, 2023
  • Revised Date: January 30, 2024
  • Accepted Date: March 05, 2024
  • Available Online: December 24, 2023
  • The long-distance live fish transportation technology is the main method used in China's 'South-to-North Fish Transportation' program. During transportation process, fish are subjected to various environmental factors such as low temperature, salinity fluctuations, alkaline stress, etc. Using multi-omics integrated research methods, we conducted a multidimensional analysis of the stress response in fish transportation, including identification of differentially expressed genes, proteins and metabolites, as well as an analysis of regulatory networks and biomarkers associated with the stress response. These studies help to understand the health status of fish during transportation, optimization of temporary rearing and transportation conditions, as well as improvement of the quality and survival rate of live fish. The paper provides an overview of the recent advancements in omics research on various stress responses in fish during transportation, and provides a reference for the precise regulation of environmental indicators and in-depth investigation of the underlying mechanisms of stress response in live fish transportation.

  • [1]
    谢京君, 李前勇, 张德志, 等. 运输应激对动物机体影响的研究现状[J]. 四川畜牧兽医, 2014, 41(1): 35-37. doi: 10.3969/j.issn.1001-8964.2014.01.020
    [2]
    周成. “双碳”政策的知识图谱、研究热点与理论框架[J]. 北京理工大学学报(社会科学版), 2023, 25(4): 94-112.
    [3]
    JAN N, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. doi: 10.1007/s11192-009-0146-3
    [4]
    GRACEY A Y, FRASER E J, LI W, et al. Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate[J]. PNAS, 2004, 101: 16970-16975. doi: 10.1073/pnas.0403627101
    [5]
    GAO J, XU J C, XU P. Gills full-length transcriptomic analysis of osmoregulatory adaptive responses to salinity stress in Coilia nasus[J]. Ecotoxicol Environ Saf, 2021, 226: 112848. doi: 10.1016/j.ecoenv.2021.112848
    [6]
    CAO D Y, LI J F, HUANG B S, et al. RNA-seq analysis reveals divergent adaptive response to hyper- and hypo-salinity in cobia, Rachycentron canadum[J]. Fish Physiol Biochem, 2020, 46(5): 1713-1727. doi: 10.1007/s10695-020-00823-7
    [7]
    YAO Z L, WANG H, CHEN L, et al. Transcriptomic profiles of Japanese medaka (Oryzias latipes) in response to alkalinity stress[J]. Genet Mol Res, 2012, 11(3): 2200-2246. doi: 10.4238/2012.June.15.2
    [8]
    ZHANG Y H, WEN H S, LIU Y, et al. Gill histological and transcriptomic analysis provides insights into the response of spotted sea bass (Lateolabrax maculatus) to alkalinity stress[J]. Aquaculture, 2023, 563: 738945.
    [9]
    MU Y N, LI W R, WU B, et al. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (Larimichthys crocea)[J]. Fish Shellfish Immunol, 2020, 98: 738-747. doi: 10.1016/j.fsi.2019.11.021
    [10]
    CHEN G, PANG M X, YU X M, et al. Transcriptome sequencing provides insights into the mechanism of hypoxia adaption in bighead carp (Hypophthalmichthys nobilis)[J]. Comp Biochem Physiol D, 2021, 40: 100891.
    [11]
    CALDUCH G, DAVEY G, SAERA V, et al. Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.)[J]. BMC Genomics, 2010, 11: 193. doi: 10.1186/1471-2164-11-193
    [12]
    CAIRNS M T, JOHNSON M C, TALBOT A T, et al. A cDNA microarray assessment of gene expression in the liver of rainbow trout (Oncorhynchus mykiss) in response to a handling and confinement stressor[J]. Comp Biochem Physiol Part D, 2008, 3(1): 51-66.
    [13]
    黄智慧, 商晓梅, 薛宝贵, 等. 大菱鲆 (Scophthalmus maximus) 低温胁迫耐受性能与体表蛋白组学研究[J]. 海洋与湖沼, 2013, 44(3): 638-644. doi: 10.11693/hyhz201303015015
    [14]
    李明云, 冀德伟, 吴海庆, 等. 低温胁迫下大黄鱼肝脏蛋白质组双向电泳分析[J]. 农业生物技术学报, 2010, 18(2): 323-328. doi: 10.3969/j.issn.1674-7968.2010.02.020
    [15]
    LAI K P, TAM N, WANG S Y, et al. Proteomic response of the brain to hypoxic stress in marine medaka fish (Oryzias melastigma)[J]. Front Mar Sci, 2021, 8: 618489.
    [16]
    IMBROGNO S, AIELLO D, FILICE M, et al. MS-based proteomic analysis of cardiac response to hypoxia in the goldfish (Carassius auratus)[J]. Sci Rep, 2019, 9(1): 18953. doi: 10.1038/s41598-019-55497-w
    [17]
    WEN B, JIN S R, CHEN Z Z, et al. Physiological responses to cold stress in the gills of discus fish (Symphysodon aequifasciatus) revealed by conventional biochemical assays and GC-TOF-MS metabolomics[J]. Sci Total Environ, 2018, 640/641: 1372-1381. doi: 10.1016/j.scitotenv.2018.05.401
    [18]
    JIAO S, NIE M M, SONG H B, et al. Physiological responses to cold and starvation stresses in the liver of yellow drum (Nibea albiflora) revealed by LC-MS metabolomics[J]. Sci Total Environ, 2020, 715: 136940. doi: 10.1016/j.scitotenv.2020.136940
    [19]
    JIANG W W, TIAN X L, FANG Z H, et al. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics[J]. Sci Total Environ, 2019, 653: 465-474. doi: 10.1016/j.scitotenv.2018.10.404
    [20]
    SUN Y C, WU S, DU N N, et al. High-throughput metabolomics enables metabolite biomarkers and metabolic mechanism discovery of fish in response to alkalinity stress[J]. RSC Adv, 2018, 8(27): 14983-14990. doi: 10.1039/C8RA01317A
    [21]
    MUSHTAQ M Y, MARCAL R M, CHAMPAGNE D L, et al. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics[J]. Planta Med, 2014, 80(14): 1227-1233. doi: 10.1055/s-0034-1382878
    [22]
    刘骁, 谢晶, 黄硕琳. 鱼类保活运输的研究进展[J]. 食品与发酵工业, 2015, 41(8): 255-260.
    [23]
    袁仲瑾, 岑剑伟, 李来好, 等. 低温暂养对珍珠龙胆石斑鱼存活、非特异性免疫及抗氧化指标的影响[J]. 南方水产科学, 2022, 18(6): 118-126. doi: 10.12131/20220042
    [24]
    YANG Q H, TAN B P, DONG X H, et al. Effects of different levels of Yucca schidigera extract on the growth and nonspecific immunity of Pacific white shrimp (Litopenaeus vannamei) and on culture water quality[J]. Aquaculture, 2015, 439: 39-44. doi: 10.1016/j.aquaculture.2014.11.029
    [25]
    徐钢春, 杜富宽, 聂志娟, 等. 10‰ 盐度对长江刀鲚幼鱼装载和运输胁迫中应激指标的影响[J]. 水生生物学报, 2015, 39(1): 66-72.
    [26]
    HONG X G, XIA F L, JIA L L, et al. Effects of acute ammonia exposure on antioxidant and detoxification metabolism in clam Cyclina sinensis[J]. Eur J Med Chem: Chimie Therapeutique, 2021, 211(2): 111895.
    [27]
    于淼. 拥挤胁迫对鱼类影响研究进展[J]. 安徽农业科学, 2008, 36(3): 1078-1080, 1082. doi: 10.3969/j.issn.0517-6611.2008.03.100
    [28]
    周显青, 孙儒泳, 牛翠娟. 应激对水生动物生长、行为和生理活动的影响[J]. 动物学研究, 2001(2): 154-158. doi: 10.3321/j.issn:0254-5853.2001.02.013
    [29]
    邓红雨, 郑立, 范佳英. 动物运输应激源与应激反应影响因子研究进展[J]. 家畜生态学报, 2015, 36(5): 81-88.
    [30]
    CELI M, FILICIOTTO F, MARICCHIOLO G, et al. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata L.)[J]. Fish Physiol Biochem, 2015, 42(2): 631-641.
    [31]
    张饮江, 黎臻, 谢文博, 等. 金鱼对低温、振动胁迫应激反应的试验研究[J]. 水产科技情报, 2012, 39(3): 116-122.
    [32]
    LOWE R, SHIRLEY N, BLEACKLEY M, et al. Transcriptomics technologies[J]. PLoS Comput Biol, 2017, 13(5): e1005457. doi: 10.1371/journal.pcbi.1005457
    [33]
    QIAN X, BA Y, ZHUANG Q F, et al. RNA-Seq technology and its application in fish transcriptomics[J]. OMICS, 2014, 18(2): 98-110. doi: 10.1089/omi.2013.0110
    [34]
    黄勇, 龚望宝, 陈海刚, 等. 基于RNA-Seq高通量测序技术的大口黑鲈转录组分析[J]. 南方水产科学, 2019, 15(1): 106-112. doi: 10.12131/20180066
    [35]
    EISSA N, WANG H P. Transcriptional stress responses to environmental and husbandry stressors in aquaculture species[J]. Rev Aquac, 2014, 6: 1-28.
    [36]
    MORA L, GALLEGO M, TOLDRÁ F. New approaches based on comparative proteomics for the assessment of food quality[J]. Curr Opin Food Sci, 2018, 22: 22-27. doi: 10.1016/j.cofs.2018.01.005
    [37]
    KARVE T M, CHEEMA A K. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease[J]. Amino Acids, 2015, 2011: 207691.
    [38]
    LAI K P, TAM N, WANG S Y, et al. Proteomic response of the brain to hypoxic stress in marine medaka fish (Oryzias melastigma)[J]. Front Mar Sci, 2021, 8: 618489. doi: 10.3389/fmars.2021.618489
    [39]
    ROY S, KUMAR V, KUMAR V, et al. Acute phase proteins and their potential role as an indicator for fish health and in diagnosis of fish diseases[J]. Protein Pept Lett, 2016, 24(1): 78-89. doi: 10.2174/0929866524666161121142221
    [40]
    陈慧梅, 刘志红. 代谢组学及其研究方法和应用[J]. 肾脏病与透析肾移植杂志, 2005(1): 59-64.
    [41]
    SAMUELSSON L M, LARSSON D G. Contributions from metabolomics to fish research[J]. Mol Biosyst, 2008, 4(10): 974-979. doi: 10.1039/b804196b
    [42]
    MELIS R, ANEDDA R. Biometric and metabolic profiles associated to different rearing conditions in offshore farmed gilthead sea bream (Sparus aurata L.)[J]. Electrophoresis, 2014, 35(11): 1590-1598. doi: 10.1002/elps.201300548
    [43]
    PENA L S, FERRANDO M D, PENA J B. Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine[J]. Aquat Toxicol, 2003, 65(4): 337-360. doi: 10.1016/S0166-445X(03)00148-6
    [44]
    陈山乔. 基于代谢组学的水产品物流相关技术研究[D]. 上海: 上海海洋大学, 2016: 56-64.
    [45]
    郑广勇, 曾涛, 李亦学. 前沿信息技术在生物医学大数据中的应用及展望[J]. 遗传, 2021, 43(10): 924-929.
    [46]
    CHEN R, GEORGE I, JENNIFER L, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes[J]. Cell, 2012, 148(6): 1293-1307. doi: 10.1016/j.cell.2012.02.009
    [47]
    HORGAN R P. 'Omic' technologies: genomics, transcriptomics, proteomics and metabolomics[J]. TOG, 2011, 13: 189-195. doi: 10.1576/toag.13.3.189.27672
    [48]
    HOGSTRAND C, BALESARIA S, GLOVER C N. Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout[J]. Comp Biochem Physiol B, 2002, 133(4): 523-535. doi: 10.1016/S1096-4959(02)00125-2
    [49]
    CHANG E S. Stressed-out lobsters: crustacean hyperglycemic hormone and stress proteins[J]. Integr Comp Biol, 2005, 45(1): 43-50. doi: 10.1093/icb/45.1.43
    [50]
    ROOT L, CAMP A, MACNIVEN L, et al. Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover[J]. Genomics, 2021: 3235-3249.
    [51]
    张华琨. 暗纹东方鲀在急性低氧胁迫下鳃和肌肉的转录组及代谢组分析[D]. 大连: 大连海洋大学, 2023: 59-60.
    [52]
    GINER C, DAVEY G, SAER V, et al. Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.)[J]. BMC Genomics, 2010, 1(1): 193.
    [53]
    WANG T W, WANG Y L, LIU X T, et al. Combined transcriptomics and metabolomics analyses in grass carp under anesthetic stress[J]. Front Cell Infect Mi, 2022, 12: 931696. doi: 10.3389/fcimb.2022.931696
    [54]
    BATTISTI E K, RABAIOLI A, UCZAY J, et al. Effect of stocking density on growth, hematological and biochemical parameters and antioxidant status of silver catfish (Rhamdia quelen) cultured in a biofloc system[J]. Aquaculture, 2020, 524: 735213.
    [55]
    MENG C, KUSTER B, CULHANE, et al. A multivariate approach to the integration of multi-omics datasets[J]. Bmc Bioinformatics, 2014, 15(1): 1-13. doi: 10.1186/1471-2105-15-1
    [56]
    康玉军. 虹鳟肝脏响应高温胁迫的蛋白质组学与代谢组学研究[D]. 兰州: 甘肃农业大学, 2020: 91-98.
    [57]
    PRUNET P, OVERLI O, DOUXFILS J, et al. Fish welfare and genomics[J]. Fish Physiol Biochem, 2012, 38(1): 43-60. doi: 10.1007/s10695-011-9522-z
    [58]
    周家蓬, 裴智勇, 陈禹保, 等. 基于高通量测序的全基因组关联研究策略[J]. 遗传, 2014, 36(11): 1099-1111.
  • Related Articles

    [1]ZHAO Yang, DENG Jianchao, ZHANG Sirong, LI Chunsheng, XIANG Huan, WANG Di, ZHAO Yongqiang, CHEN Shengjun. Analysis of metabolite differences during oyster sauce spoilage using untargeted metabolomics[J]. South China Fisheries Science. DOI: 10.12131/20250034
    [2]LYU Junlin, CHEN Zuozhi, LI Bilong, CAI Runji, GAO Yuefang. Research on fish recognition based on multi-stage feature extraction learning[J]. South China Fisheries Science, 2024, 20(1): 99-109. DOI: 10.12131/20230197
    [3]WEI Tianqi, ZHENG Xiongsheng, LI Tianbing, WANG Richeng. Multi-group convolutional neural network for gender recognition of Portunus tritubereulatus[J]. South China Fisheries Science, 2024, 20(1): 89-98. DOI: 10.12131/20230107
    [4]SHEN Yongfu, GENG Liang, GONG Yi, DING Yu, LI Yunkai, DENG Jiangshan, CHEN Haonan. Effects of preservation methodology on multi-tissue stable isotope signatures of oceanic squid: a case study of jumbo squid (Dosidicus gigas)[J]. South China Fisheries Science, 2023, 19(5): 162-167. DOI: 10.12131/20230091
    [5]BAO Junjie, WANG Yongjie, CHEN Honglian, SUN Wen, ZHANG Jing, ZHOU Beibei. Untargeted metabolomics analysis of metabolic differences of crayfish (Procambarus clarkii)  meat with different diets[J]. South China Fisheries Science, 2023, 19(5): 104-112. DOI: 10.12131/20230055
    [6]CHEN Li, XU Jiaxin, LI Liujia, ZHAO Chengfa, LONG Xiaowen. Effects of dietary fishmeal replacement by Periplaneta americana meal on biochemical indexes, disease resistance and metabolomics of juvenile Oncorhynchus mykiss[J]. South China Fisheries Science, 2023, 19(4): 86-97. DOI: 10.12131/20220208
    [7]ZHANG Linbao, TIAN Fei, CHEN Haigang, ZHANG Zhe, YE Guoling, LI Yitong, TANG Haiwei. Comparative transcriptome analysis in livers of female and male marine medaka (Oryzias melastigma)[J]. South China Fisheries Science, 2023, 19(3): 88-97. DOI: 10.12131/20220250
    [8]SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038
    [9]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [10]WANG Xinchao, SUN Jingjing, FAN Meihua, WU Mei, SHI Ge, WANG Rixin, LIAO Zhi. Proteomic analysis of granule of hemocytes from Mytilus coruscus[J]. South China Fisheries Science, 2012, 8(2): 7-14. DOI: 10.3969/j.issn.2095-0780.2012.02.002
  • Cited by

    Periodical cited type(2)

    1. 侯钧,周为峰. 基于CFD方法的重力式网箱群组阻流效应研究. 航海. 2025(03): 36-39 .
    2. 田中旭,胡学文,刘智健,杨丹杰,张俊. 深海浮筏式网箱高效有限元分析及结构轻量化. 南方水产科学. 2025(03): 92-100 . 本站查看

    Other cited types(1)

Catalog

    Recommendations
    Study on total artificial reproduction, embryo development and early larva growth of hybrid sturgeon (acipenser baerii♀×a. schrenckii♂)
    HE Huan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Comparison of fish species detection effect of three sets of commonly used edna metabarcoding primers on sanya water samples
    GUO Yaojie et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Study on diurnal and nocturnal variation of fish resources in marine ranching by fixed-point monitoring based on acoustic technology
    CHENG Gao et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Preliminary study on biological carbon storage of fishery resources in zhuhai wailingding marine ranching in spring
    WEI Wendi et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Research progress in fish tracking technology based on deep learning
    LI Penglong et al., FISHERY MODERNIZATION, 2024
    Design and testing of a guided live fish grading device
    WANG Zhiyong et al., FISHERY MODERNIZATION, 2024
    The fish microbiota: research progress and potential applications
    Luan, Yinyin et al., ENGINEERING, 2023
    Recent advances in extracellular vesicles for therapeutic cargo delivery
    Kim, Hyo In et al., EXPERIMENTAL AND MOLECULAR MEDICINE, 2024
    Stress fusion evaluation modeling and verification based on noninvasive blood glucose biosensor for live fish waterless transportation
    FOOD SYST
    Experimental study of a wec array-floating breakwater hybrid system in multiple-degree-of-freedom motion
    APPLIED ENERGY, 2024
    Powered by
    Article views (773) PDF downloads (52) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return