Citation: | WANG Xiaoyan, ZHOU Shengjie, WANG Yinggang, SUN Yongyue, LI Minghao, MA Zhenhua. Effects of acidification stress on antioxidant and immunity in juvenile yellowfin tuna (Thunnus albacares)[J]. South China Fisheries Science, 2024, 20(3): 85-91. DOI: 10.12131/20230216 |
Excess carbon dioxide in atmosphere is absorbed by seawater and then form carbonic acid, which increases seawater acidity. To investigate the effects of seawater acidification on antioxidant and immunity in juvenile yellowfin tuna (Thunnus albacares), and to provide references for the protection of marine ecosystems and wild stocks of tuna, we took juvenile yellowfin tuna [Average body length of (18.21±1.09) cm and average body mass of (354.98±149.77) g] as research subjects, and set the pH gradients of 8.1, 7.6, 7.1 and 6.6 to determine the malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), peroxidase (POD), acid phosphatase (ACP), alkaline phosphatase (AKP) and lysozyme (LZM) activities. The results show that after 48 h, the juveniles in pH 6.6 group showed mortality. Except for the control group, the activities of SOD, CAT, POD and LZM in gills were higher (P<0.05) than those of the other tissues, with the activities of SOD, CAT and POD peaking at pH 7.1, and the LZM activity peaking at pH 6.6; the GSH-Px activity in skin was higher than that in the other tissues (P<0.05), peaking at pH 7.1. In the liver, the MDA content was the most accumulated and the ACP activity was the highest (P<0.05), with the former peaking at pH 6.6 and the latter peaking at pH 8.1; the AKP activity in red muscle was significantly lower than that in the other tissues (P<0.05), reaching its lowest level at pH 7.1. The results show that there is some resistance of immune function and antioxidant defense system in juvenile yellowfin tuna when seawater pH is above 7.1, but has partial immune dysfunction when pH is lower than 7.1.
[1] |
张勇, 石琼, 范明君, 等. 中国经济鱼类志[M]. 武汉: 华中科技大学出版社, 2015: 384-368.
|
[2] |
吴洽儿, 马振华, 于刚, 等. 金枪鱼人工养殖与加工[M]. 北京: 中国农业出版社, 2022: 10-15.
|
[3] |
周胜杰, 杨蕊, 于刚, 等. 美济礁附近海域3种金枪鱼肌肉成分检测与营养评价[J]. 南方水产科学, 2021, 17(2): 51-59. doi: 10.12131/20200229
|
[4] |
BELL J D, GANACHAUD A, GEHRKE P C, et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change[J]. Nat Clim Change, 2013, 3(6): 1-8.
|
[5] |
HAVICE E. The structure of tuna access agreements in the Western and Central Pacific Ocean: lessons for vessel day scheme planning[J]. Mar Policy, 2010, 34(5): 979-987.
|
[6] |
ORR J C, FABRY V J, AUMONT O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681-686.
|
[7] |
唐启升, 陈镇东, 余克服, 等. 海洋酸化及其与海洋生物及生态系统的关系[J]. 科学通报, 2013, 58(14): 1307-1314.
|
[8] |
丁兆坤, 王福平, 许友卿. 海水酸化对海洋生物代谢的影响及机理[J]. 水产科学, 2015, 34(5): 331-334.
|
[9] |
许友卿, 唐旎, 丁兆坤. 海水酸化对水生动物主要抗氧化酶的影响及机理[J]. 水产科学, 2016, 35(4): 453-458.
|
[10] |
FEIDANTSIS K, PÖRTNER H O, ANTONOPOULOU E, et al. Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata[J]. J Comp Physiol B, 2015, 185(2): 197-202.
|
[11] |
李玉全. pH胁迫对脊尾白虾代谢酶活力的影响[J]. 南方农业学报, 2014, 45(6): 1098-1101. doi: 10.3969/j:issn.2095-1191.2014.6.1098
|
[12] |
SUN L B, RUAN J P, LU M C, et al. Combined effects of ocean acidification and crude oil pollution on tissue damage and lipid metabolism in embryo-larval development of marine medaka (Oryzias melastigma)[J]. Environ Geochem Health, 2019, 41(4): 1847-1860.
|
[13] |
CRESPEL A, ANTTILA K, LELIÈVRE P, et al. Long-term effects of ocean acidification upon energetics and oxygen transport in the European sea bass (Dicentrarchus labrax, Linnaeus)[J]. Mar Biol, 2019, 166(9): 116.
|
[14] |
SIMON N, PATRICK L, INNA S, et al. Ocean futures for the world's largest yellowfin tuna population under the combined effects of ocean warming and acidification[J]. Front Mar Sci, 2022, 9: 816722.
|
[15] |
彭士明, 施兆鸿, 高权新, 等. 增加饲料中VC质量分数对银鲳血清溶菌酶活性及组织抗氧化能力的影响[J]. 南方水产科学, 2013, 9(4): 16-21. doi: 10.3969/j.issn.2095-0780.2013.04.003
|
[16] |
武阳, 常青, 杨旭. 不同浓度甲醛致大鼠肝细胞DNA氧化损伤作用[J]. 环境科学学报, 2009, 29(11): 2415-2419.
|
[17] |
丁小, 赵云龙, 李艳娇, 等. 急性温度胁迫对花鳅抗氧化酶活性及丙二醛含量的影响[J]. 江西水产科技, 2021(6): 14-17.
|
[18] |
罗智文, 董志祥, 林连兵, 等. 鱼类重要免疫器官抗菌机制的研究进展[J]. 水产科学, 2021, 40(4): 624-634.
|
[19] |
朱晓闻. 虾青素和维生素C改善豹纹鳃棘鲈生长及免疫应激的调控机制[D]. 湛江: 广东海洋大学, 2022: 8-13.
|
[20] |
王海锋, 成永旭, 李京昊, 等. 干露和再入水对克氏原螯虾抗氧化应激能力的影响[J]. 南方水产科学, 2019, 15(5): 69-76. doi: 10.12131/20190059
|
[21] |
樊甄姣, 杨爱国, 刘志鸿, 等. pH对栉孔扇贝体内几种免疫因子的影响[J]. 中国水产科学, 2006, 13(4): 650-654. doi: 10.3321/j.issn:1005-8737.2006.04.022
|
[22] |
崔雯婷. 海水酸化和镉复合胁迫下褐牙鲆 (Paralichthys olivaceus) 仔幼鱼抗氧化防御响应和免疫应答[D]. 北京: 中国科学院大学 (中国科学院海洋研究所), 2020: 68-70.
|
[23] |
CHATTERJEE N, PAL A K, MANUSH S M, et al. Thermal tolerance and oxygen consumption of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures[J]. J Therm Biol, 2004, 29(6): 265-270.
|
[24] |
谢晓泽. 大黄鱼谷胱甘肽过氧化物酶GPx1和GPx4的鉴定及其体外表达研究[D]. 舟山: 浙江海洋大学, 2018: 2-5.
|
[25] |
王文配, 韩泠姝, 张向磊, 等. 热胁迫对中间球海胆抗氧化酶活性及线粒体结构与功能的影响[J]. 广东海洋大学学报, 2022, 42(4): 42-48. doi: 10.3969/j.issn.1673-9159.2022.04.005
|
[26] |
吴玲玲, 陈玲, 张亚雷, 等. 菲对斑马鱼鳃和肝组织结构的影响[J]. 生态学杂志, 2007, 26(5): 688-692. doi: 10.3321/j.issn:1000-4890.2007.05.014
|
[27] |
李肖霞, 齐志涛, 迟爽, 等. 硬骨鱼类鳃黏膜免疫相关分子的研究进展[J]. 水产学报, 2023, 47(4): 049401.
|
[28] |
文春根, 张丽红, 胡宝庆, 等. pH对背角无齿蚌 (Anodonta woodiana) 5种免疫因子的影响[J]. 南昌大学学报 (理科版), 2009, 33(2): 172-176.
|
[29] |
贾秀琪, 张宏叶, 王丽, 等. 低氧胁迫对河川沙塘鳢抗氧化酶及ATP酶活性的影响[J]. 海洋渔业, 2017, 39(3): 307-309.
|
[30] |
崔平, 强俊. pH与氨氮对黄颡鱼幼鱼生长与肝脏超氧化物歧化酶的影响[J]. 淡水渔业, 2018, 48(4): 39-44. doi: 10.3969/j.issn.1000-6907.2018.04.006
|
[31] |
丁瑞霞, 黄星美, 赵旺, 等. pH急性胁迫对方斑东风螺行为及免疫酶活性的影响[J]. 渔业现代化, 2022, 49(6): 84-90. doi: 10.3969/j.issn.1007-9580.2022.06.011
|
[32] |
施郁松. 鳜皮肤黏膜免疫系统对环境温度和嗜水气单胞菌灭活疫苗的免疫应答[D]. 上海: 上海海洋大学, 2022: 2-12.
|
[33] |
蒋鑫, 潘连德, 马召腾. 松江鲈鱼皮肤的显微和亚显微结构[J]. 动物学杂志, 2012, 47(4): 96-103.
|
[34] |
张晨捷, 张艳亮, 高权新, 等. 低盐胁迫对黄姑鱼幼鱼肝脏抗氧化功能的影响[J]. 南方水产科学, 2015, 11(4): 59-64.
|
[35] |
陈旭, 左涛, 周胜杰, 等. 饲喂甘草后低盐胁迫对尖吻鲈相关酶活性的影响[J]. 水产科学, 2023, 42(3): 404-412.
|
[36] |
宋志明, 刘鉴毅, 庄平, 等. 低温胁迫对点篮子鱼幼鱼肝脏抗氧化酶活性及丙二醛含量的影响[J]. 海洋渔业, 2015, 37(2): 142-150.
|
[37] |
厉小波. 铜对瘤背石磺 (Onchidium struma) 成体的毒理学研究[D]. 上海: 华东师范大学, 2008: 41-44.
|
[38] |
刘世良, 麦康森. 贝类免疫系统和机理的研究进展[J]. 海洋学报 (中文版), 2003, 25(2): 95-105.
|
[39] |
曹新宇, 高铭鸿, 杨旭, 等. 急性低氧胁迫对黄条鰤抗氧化酶和磷酸酶活性的影响[J]. 安徽农业科学, 2022, 50(3): 88-91.
|
[40] |
谷心池. 翅嘴鳜 (Siniperca chuatsi) 幼鱼氧化应激和非特异性免疫指标对养殖环境中低氧的响应[D]. 南京: 南京农业大学, 2022: 31-34.
|
[41] |
CHEN Y H, YE B, NIU D H, et al. Changes in metabolism and immunity in response to acute salinity stress in Chinese razor clams from different regions[J]. Aquac Rep, 2021, 19: 100624.
|
[42] |
张振国, 钱红, 刘克明, 等. 复合免疫增强剂对金鳟非特异性免疫力的影响[J]. 水产学杂志, 2020, 33(1): 10-12.
|
[43] |
王艳玲, 赵金良, 赵岩. 环境胁迫对鱼类免疫机制影响的研究进展[J]. 河北渔业, 2020(5): 46-50, 62. doi: 10.3969/j.issn.1004-6755.2020.05.014
|
[44] |
张惠, 曾霖, 熊逸飞, 等. 盐度驯化改善大黄鱼盐度胁迫耐受性的作用机制[J]. 中国水产科学, 2023, 30(3): 334-343.
|
[1] | ZHAO Lianling, LIU Huaxue, RAO Yiyong, LIAO Xiuli, DAI Ming, HUANG Honghui. Seawater quality assessment method based on improved grey relational degree clustering: a case study of Daya Bay[J]. South China Fisheries Science, 2024, 20(1): 141-150. DOI: 10.12131/20230031 |
[2] | ZHOU Xihan, WU Qia'er, ZHOU Yanbo, XIE Enge, MA Shengwei. Prediction of abundance of Sthenoteuthis oualaniensis in South China Sea based on optimized grey system model[J]. South China Fisheries Science, 2021, 17(3): 1-7. DOI: 10.12131/20200218 |
[3] | LI Ting, ZHU Changbo, LI Junwei, CHEN Suwen, XIE Xiaoyong, LIU Yong. Water quality assessment for Hailing Bay estuary, China[J]. South China Fisheries Science, 2018, 14(3): 49-57. DOI: 10.3969/j.issn.2095-0780.2018.03.006 |
[4] | MO Baolin, QIN Chuanxin, CHEN Pimao, DIAO Yingjiao, YUAN Huarong, LI Xiaoguo, TONG Fei, FENG Xue. Preliminary analysis of structure and function of Daya Bay ecosystem based on Ecopath model[J]. South China Fisheries Science, 2017, 13(3): 9-19. DOI: 10.3969/j.issn.2095-0780.2017.03.002 |
[5] | SU Li, HUANG Zirong, CHEN Zuozhi. Characteristics of phytoplankton community in Shuidong Bay in spring and autumn[J]. South China Fisheries Science, 2015, 11(4): 27-33. DOI: 10.3969/j.issn.2095-0780.2015.04.004 |
[6] | YU Ying, JIANG Linlin, ZHONG Shuoliang. Residual characteristics of PCBs in ecological environment of Dongshan Bay in Fujian Province[J]. South China Fisheries Science, 2014, 10(1): 64-70. DOI: 10.3969/j.issn.2095-0780.2014.01.010 |
[7] | LIU Qun, XU Binduo, REN Yiping. Prediction of freshwater aquaculture production of Qingdao city by using a grey prediction model[J]. South China Fisheries Science, 2009, 5(5): 38-43. DOI: 10.3969/j.issn.1673-2227.2009.05.007 |
[8] | LI Xu-jie, REN Yi-ping, XU Bin-duo, MA Guang-wen. The growth characteristics of Penaeus japonicus in the Guzhenkou Bay of Qingdao[J]. South China Fisheries Science, 2008, 4(4): 26-29. |
[9] | LIN Lin, LI Chunhou, DU Feiyan, DAI Ming, HUANG Honghui. GIS-based comprehensive assessment of marine ecological environment quality in Daya Bay[J]. South China Fisheries Science, 2007, 3(5): 19-25. |
[10] | LU Zhenbin, CAI Qinghai, ZHANG Xuemin. Estimation of the aquaculture pollution to water body in Tongan Bay[J]. South China Fisheries Science, 2007, 3(1): 54-61. |
1. |
江满菊,郭禹,秦传新,辛益,赵心冉,于刚,马振华,杨育凯. 红鳍笛鲷幼鱼对不同开孔形状和尺寸人工鱼礁模型的行为偏好探究. 南方水产科学. 2024(05): 42-52 .
![]() | |
2. |
曾钰,肖曲,陶佳,高雯媛,张翔宇. 基于人工神经网络构建湖南省企业重金属废水预测模型研究. 科技资讯. 2024(24): 202-204 .
![]() | |
3. |
马晓霞. 地下水水环境中的非突发性水质风险预测模型研究. 环境科学与管理. 2022(08): 181-185 .
![]() | |
4. |
徐文哲,朱丽梅,范海莉,王增远,周翠兰. 基于神经网络算法的造纸生产线废水处理水质预测. 造纸科学与技术. 2022(02): 39-43 .
![]() |