Citation: | YUAN Taiping, LIAO Yuqi, HUANG Xiaohua, HU Yu, TAO Qiyou, LI Gen, PANG Guoliang. Design and experimental research on key components of net cleaning equipment for deep-water cage[J]. South China Fisheries Science, 2024, 20(1): 25-33. DOI: 10.12131/20230214 |
In order to solve the problem of lack of cleaning equipment for large-scale net cage aquaculture in China, we desinged a net cleaning equipment for deep-water cage aquaculture based on the principle of high-pressure jet cavitation. Then we established the hydrodynamic characteristic analysis equation of key components of cleaning equipment by using mathematical modeling and physical experimental methods. Besides, we conducted underwater cleaning experiments to investigate the effects of nozzle diameter, nozzle to rotating discs angle (Angle between nozzle axis and diversion rotary disc surface), and target distance on the biological removal rate of cleaning equipment under different working conditions. The results show that the biological removal rate of fouling on the net hanging board was influenced by multiple factors such as target distance, nozzle diameter and nozzle to rotating discs angle. Within the experimental parameter range, the biological removal rate of fouling on the net cleaning equipment was 30.26%–72.55%. Within the range of test parameters, when the nozzle diameter was 1.0 mm, the nozzle to rotating discs angle was 60°, and the target distance was 0 cm. The removal rate of fouling organisms on the net hanging boards was the highest. The effect of target distance on the removal rate of biofouling on the net hanging boards was the most significant. Under the impact of cavitation jet from net cleaning equipment, shellfish fouling organisms mainly fell off in the form of shell fragmentation. With the main residue being soft shellfish silk discs with strong adsorption capacity. The results optimize the parameter configuration of underwater cleaning equipment, providing theoretical support for the design of net cleaning equipment for cage aquaculture.
[1] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 17-21.
|
[2] |
ZHAO Y X, ZHANG J H, LIU Y, et al. Numerical assessment of the environmental impacts of deep sea cage culture in the Yellow Sea, China[J]. Sci Total Environ, 2020, 706: 135752. doi: 10.1016/j.scitotenv.2019.135752
|
[3] |
中华人民共和国中央人民政府. 中共中央国务院关于做好2023年全面推进乡村振兴重点工作的意见[EB/OL]. [2023-10-28]. https://www.gov.cn/zhengce/2023-02/13/content_5741370.htm.
|
[4] |
中华人民共和国农业农村部. 关于加快推进水产养殖业绿色发展的若干意见[EB/OL]. [2023-10-28]. http://www.moa.gov.cn/nybgb/2019/201902/201905/t20190518_6309480.htm.
|
[5] |
广东省农业农村厅. 关于加快海洋渔业转型升级 促进现代化海洋牧场高质量发展的若干措施[EB/OL]. [2023-10-28]. http://dara.gd.gov.cn/zcwj/content/post_4259741.html.
|
[6] |
袁太平, 胡昱, 王绍敏, 等. 喷嘴结构对网衣清洗装备水下空化特性的影响[J]. 水产学报, 2021, 45(2): 296-305.
|
[7] |
袁太平, 胡昱, 王绍敏, 等. 空化射流式深水网箱网衣清洗装备的性能研究[J]. 南方水产科学, 2021, 17(4): 109-117.
|
[8] |
MAINSTAY. Net cleaner[EB/OL]. [2023-09-11]. https://mainstay.no/taxonomy/net-cleaners/.
|
[9] |
YANMAR. Sensui-Kun Mark III[EB/OL]. [2023-09-11]. https://www.powerequipment.com.au/marine-accessories/sensui-kun-mark-iii/.
|
[10] |
SERVICE O F. Rov service[EB/OL]. [2023-09-11]. https://www.oceanfarmservices.com/services/rov.
|
[11] |
PENG K, TIAN S, LI G, et al. Cavitation in water jet under high ambient pressure conditions[J]. Exp Therm Fluid Sci, 2017, 89: 9-18. doi: 10.1016/j.expthermflusci.2017.07.021
|
[12] |
黄小华, 郭根喜, 胡昱, 等. 轻型移动式水下洗网装置设计[J]. 渔业现代化, 2009, 36(3): 49-55. doi: 10.3969/j.issn.1007-9580.2009.03.011
|
[13] |
张小明, 郭根喜, 陶启友, 等. 歧管式高压射流水下洗网机的设计[J]. 南方水产, 2010, 6(3): 46-51.
|
[14] |
庄集超, 庞洪臣, 刘子浪, 等. 一种新型深海网箱网衣清洗机器人设计[J]. 机械, 2018, 45(1): 72-75.
|
[15] |
宋玉刚, 郑雄胜. 深海网箱网衣清洗系统设计研究[J]. 机械研究与应用, 2012, 25(2): 41-43. doi: 10.3969/j.issn.1007-4414.2012.02.013
|
[16] |
青岛森科特智能仪器有限公司. 网衣清洗机器人[EB/OL]. [2023-09-11]. http://www.sencott.cn/#/index.
|
[17] |
刘思源, 黄林琪, 范桂兵, 等. 基于空化射流的深水网箱清洗机器人设计应用[J]. 机械研究与应用, 2021, 34(4): 66-68.
|
[18] |
邢瑶, 谢颖, 蒋绍博. 水下清洗机器人总体方案及实现[J]. 昆明冶金高等专科学校学报, 2019, 35(5): 50-58.
|
[19] |
JI C Y, GUO J T, YE R C, et al. Experimental study of an ocean surface cleaning system[J]. Ocean Eng, 2022, 249: 110937. doi: 10.1016/j.oceaneng.2022.110937
|
[20] |
郭根喜, 黄小华, 胡昱, 等. 深水网箱理论研究与实践[M]. 北京: 海洋出版社, 2012: 156-171.
|
[21] |
BRENNEN C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995: 22-24.
|
[22] |
FRANC J, MICHEL J. Fundamentals of cavitation[M]. Dordrecht: Kluwer Academic Publishers, 2003: 8-11.
|
[23] |
ZHAO X D, FU Y, LI Z Y, et al. The numerical simulation of collapse pressure and boundary of the cavity cloud in venturi[J]. Chin J Chem Eng, 2009, 6(17): 896-903.
|
[24] |
ZHONG X, DONG J M, LIU M S, et al. Experimental study on ship fouling cleaning by ultrasonic-enhanced submerged cavitation jet: a preliminary study[J]. Ocean Eng, 2022, 258: 111844. doi: 10.1016/j.oceaneng.2022.111844
|
[25] |
JANA B, MICHAEL S, FLORA B, et al. Biofouling in marine aquaculture: a review of recent research and developments[J]. Biofouling, 2019, 35(6): 631-648. doi: 10.1080/08927014.2019.1640214
|
[26] |
BI C W, ZHAO Y P, DONG G H, et al. Drag on and flow through the hydroid-fouled nets in currents[J]. Ocean Eng, 2018, 161: 195-204. doi: 10.1016/j.oceaneng.2018.05.005
|
[27] |
刘海霞, 李秀阁, 张桃, 等. 射流压力对淹没水射流冲击与空蚀效果的影响[J]. 表面技术, 2016, 45(12): 104-110. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.017
|
[28] |
葛宜元, 梁秋艳, 王桂莲, 等. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学, 2015: 106-111.
|
[29] |
QU X Y, HU F X, KUMAZAWA T, et al. Deformation and drag force of model square fish cages in a uniform flow[J]. Ocean Eng, 2019, 171: 619-624. doi: 10.1016/j.oceaneng.2018.12.016
|
[30] |
YUAN T P, HUANG X H, HU Y, et al. Aquaculture net cleaning with cavitation improves biofouling removal[J]. Ocean Eng, 2023, 285: 115241. doi: 10.1016/j.oceaneng.2023.115241
|
[31] |
YANG Y F, LI W, SHI W D, et al. Numerical investigation of a high-pressure submerged jet using a cavitation model considering effects of shear stress[J]. Processes, 2019, 7(8): 541. doi: 10.3390/pr7080541
|
[1] | CHEN Yuanshuai, PANG Guoliang, HUANG Xiaohua, LI Gen, YUAN Taiping, HU Yu, TAO Qiyou. Influence of net on structural response of jack-up truss net cage[J]. South China Fisheries Science, 2024, 20(1): 43-53. DOI: 10.12131/20230213 |
[2] | XING Wang, HUANG Xiaohua, LI Gen, PANG Guoliang, YUAN Taiping. Construction of a dynamics simulation system for net cleaning robot based on Gazebo[J]. South China Fisheries Science, 2024, 20(1): 1-10. DOI: 10.12131/20230189 |
[3] | FAN Xiaoxu, LIN Shen, LIU Dan, TIAN Wei, JIANG Mei, LI Lei. Study on adhesion characteristics of fouling organisms of ultra-high molecular weight polyethylene and copper alloys mesh[J]. South China Fisheries Science, 2023, 19(6): 30-37. DOI: 10.12131/20230135 |
[4] | YUAN Taiping, HU Yu, WANG Shaoming, LIAO Yuqi, TAO Qiyou, HUANG Xiaohua, LIU Haiyang, GUO Gengxi. Research on performance of cavitation jet equipment for deep-water cage cleaning[J]. South China Fisheries Science, 2021, 17(4): 109-117. DOI: 10.12131/20210027 |
[5] | ZHANG Wei, LI Chunhou, JIA Xiaoping, CHEN Pimao, FANG Liang. Seasonal variation of biofouling communities on concrete[J]. South China Fisheries Science, 2015, 11(1): 9-17. DOI: 10.3969/j.issn.2095-0780.2015.01.002 |
[6] | HU Yu, GUO Genxi, HUANG Xiaohua, TAO Qiyou, ZHANG Xiaoming. Simulation of flow field inside the net cleaning machine based on ANSYS[J]. South China Fisheries Science, 2010, 6(1): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.01.002 |
[7] | SHUI Bo-nian, GUO Di-fei. Seasonal variation analysis of fouling organisms on offshore cages in Zhoushan[J]. South China Fisheries Science, 2008, 4(4): 36-41. |
[8] | HU Yu, GUO Gen-xi, HUANG Xiao-hua, TAO Qi-you. Nozzle design of high-pressure free-jet-type submarine net cleaning machine[J]. South China Fisheries Science, 2008, 4(4): 16-20. |
[9] | GUO Gen-xi, TAO Qi-you. Performance analysis of the column cod-end and truncated cone cod-end of deep-water net cage[J]. South China Fisheries Science, 2005, 1(4): 24-29. |
[10] | GUO Gen-xi, TAO Qi-you. Design and making of truncated cone cod-end of deep-water net cage[J]. South China Fisheries Science, 2005, 1(1): 49-53. |
1. |
徐菲,徐开达,张洪亮,卢占晖,周永东,李羽如,叶莹莹,马文静,金梓慧. 浙江岱衢洋海域春秋季游泳动物群落结构及生物量粒径谱特征. 海洋与湖沼. 2025(01): 165-174 .
![]() | |
2. |
Zhisen LUO,Murong YI,Xiaodong YANG,Xiao CHEN,Jinxi WANG,Changping JIANG,Fengming LIU,Konglan LUO,Xiongbo HE,Hung-Du LIN,Bin KANG,Yunrong YAN. Checklist of marine fishes in the Beibu Gulf: fish classification, resource protection, and biodiversity challenge. Journal of Oceanology and Limnology. 2025(01): 232-247 .
![]() |
|
3. |
李诗佳,施利燕,钟俊生,赵路路. 长江口南部水域春、秋季鱼类群落结构比较. 上海海洋大学学报. 2024(01): 135-149 .
![]() | |
4. |
李淼,许友伟,孙铭帅,范江涛,李佳俊,张魁,陈作志. 拉尼娜事件前后北部湾鱼类群落结构变化研究. 南方水产科学. 2023(02): 1-11 .
![]() | |
5. |
Chenyu Song,Zhong Tu,Na Song. Discordant patterns of genetic variation between mitochondrial and microsatellite markers in Acanthogobius ommaturus across the coastal areas of China. Acta Oceanologica Sinica. 2023(04): 72-80 .
![]() |
|
6. |
王鑫,李昌文,徐加涛,李士虎,宋可心,唐佳伟,马晓娜,冯志华. 灌河口海域水生动物群落结构及分布特征. 江苏海洋大学学报(自然科学版). 2023(04): 29-41 .
![]() |