YUAN Taiping, LIAO Yuqi, HUANG Xiaohua, HU Yu, TAO Qiyou, LI Gen, PANG Guoliang. Design and experimental research on key components of net cleaning equipment for deep-water cage[J]. South China Fisheries Science, 2024, 20(1): 25-33. DOI: 10.12131/20230214
Citation: YUAN Taiping, LIAO Yuqi, HUANG Xiaohua, HU Yu, TAO Qiyou, LI Gen, PANG Guoliang. Design and experimental research on key components of net cleaning equipment for deep-water cage[J]. South China Fisheries Science, 2024, 20(1): 25-33. DOI: 10.12131/20230214

Design and experimental research on key components of net cleaning equipment for deep-water cage

More Information
  • Received Date: October 31, 2023
  • Revised Date: December 10, 2023
  • Accepted Date: December 14, 2023
  • Available Online: December 20, 2023
  • In order to solve the problem of lack of cleaning equipment for large-scale net cage aquaculture in China, we desinged a net cleaning equipment for deep-water cage aquaculture based on the principle of high-pressure jet cavitation. Then we established the hydrodynamic characteristic analysis equation of key components of cleaning equipment by using mathematical modeling and physical experimental methods. Besides, we conducted underwater cleaning experiments to investigate the effects of nozzle diameter, nozzle to rotating discs angle (Angle between nozzle axis and diversion rotary disc surface), and target distance on the biological removal rate of cleaning equipment under different working conditions. The results show that the biological removal rate of fouling on the net hanging board was influenced by multiple factors such as target distance, nozzle diameter and nozzle to rotating discs angle. Within the experimental parameter range, the biological removal rate of fouling on the net cleaning equipment was 30.26%–72.55%. Within the range of test parameters, when the nozzle diameter was 1.0 mm, the nozzle to rotating discs angle was 60°, and the target distance was 0 cm. The removal rate of fouling organisms on the net hanging boards was the highest. The effect of target distance on the removal rate of biofouling on the net hanging boards was the most significant. Under the impact of cavitation jet from net cleaning equipment, shellfish fouling organisms mainly fell off in the form of shell fragmentation. With the main residue being soft shellfish silk discs with strong adsorption capacity. The results optimize the parameter configuration of underwater cleaning equipment, providing theoretical support for the design of net cleaning equipment for cage aquaculture.

  • [1]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 17-21.
    [2]
    ZHAO Y X, ZHANG J H, LIU Y, et al. Numerical assessment of the environmental impacts of deep sea cage culture in the Yellow Sea, China[J]. Sci Total Environ, 2020, 706: 135752. doi: 10.1016/j.scitotenv.2019.135752
    [3]
    中华人民共和国中央人民政府. 中共中央国务院关于做好2023年全面推进乡村振兴重点工作的意见[EB/OL]. [2023-10-28]. https://www.gov.cn/zhengce/2023-02/13/content_5741370.htm.
    [4]
    中华人民共和国农业农村部. 关于加快推进水产养殖业绿色发展的若干意见[EB/OL]. [2023-10-28]. http://www.moa.gov.cn/nybgb/2019/201902/201905/t20190518_6309480.htm.
    [5]
    广东省农业农村厅. 关于加快海洋渔业转型升级 促进现代化海洋牧场高质量发展的若干措施[EB/OL]. [2023-10-28]. http://dara.gd.gov.cn/zcwj/content/post_4259741.html.
    [6]
    袁太平, 胡昱, 王绍敏, 等. 喷嘴结构对网衣清洗装备水下空化特性的影响[J]. 水产学报, 2021, 45(2): 296-305.
    [7]
    袁太平, 胡昱, 王绍敏, 等. 空化射流式深水网箱网衣清洗装备的性能研究[J]. 南方水产科学, 2021, 17(4): 109-117.
    [8]
    MAINSTAY. Net cleaner[EB/OL]. [2023-09-11]. https://mainstay.no/taxonomy/net-cleaners/.
    [9]
    YANMAR. Sensui-Kun Mark III[EB/OL]. [2023-09-11]. https://www.powerequipment.com.au/marine-accessories/sensui-kun-mark-iii/.
    [10]
    SERVICE O F. Rov service[EB/OL]. [2023-09-11]. https://www.oceanfarmservices.com/services/rov.
    [11]
    PENG K, TIAN S, LI G, et al. Cavitation in water jet under high ambient pressure conditions[J]. Exp Therm Fluid Sci, 2017, 89: 9-18. doi: 10.1016/j.expthermflusci.2017.07.021
    [12]
    黄小华, 郭根喜, 胡昱, 等. 轻型移动式水下洗网装置设计[J]. 渔业现代化, 2009, 36(3): 49-55. doi: 10.3969/j.issn.1007-9580.2009.03.011
    [13]
    张小明, 郭根喜, 陶启友, 等. 歧管式高压射流水下洗网机的设计[J]. 南方水产, 2010, 6(3): 46-51.
    [14]
    庄集超, 庞洪臣, 刘子浪, 等. 一种新型深海网箱网衣清洗机器人设计[J]. 机械, 2018, 45(1): 72-75.
    [15]
    宋玉刚, 郑雄胜. 深海网箱网衣清洗系统设计研究[J]. 机械研究与应用, 2012, 25(2): 41-43. doi: 10.3969/j.issn.1007-4414.2012.02.013
    [16]
    青岛森科特智能仪器有限公司. 网衣清洗机器人[EB/OL]. [2023-09-11]. http://www.sencott.cn/#/index.
    [17]
    刘思源, 黄林琪, 范桂兵, 等. 基于空化射流的深水网箱清洗机器人设计应用[J]. 机械研究与应用, 2021, 34(4): 66-68.
    [18]
    邢瑶, 谢颖, 蒋绍博. 水下清洗机器人总体方案及实现[J]. 昆明冶金高等专科学校学报, 2019, 35(5): 50-58.
    [19]
    JI C Y, GUO J T, YE R C, et al. Experimental study of an ocean surface cleaning system[J]. Ocean Eng, 2022, 249: 110937. doi: 10.1016/j.oceaneng.2022.110937
    [20]
    郭根喜, 黄小华, 胡昱, 等. 深水网箱理论研究与实践[M]. 北京: 海洋出版社, 2012: 156-171.
    [21]
    BRENNEN C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995: 22-24.
    [22]
    FRANC J, MICHEL J. Fundamentals of cavitation[M]. Dordrecht: Kluwer Academic Publishers, 2003: 8-11.
    [23]
    ZHAO X D, FU Y, LI Z Y, et al. The numerical simulation of collapse pressure and boundary of the cavity cloud in venturi[J]. Chin J Chem Eng, 2009, 6(17): 896-903.
    [24]
    ZHONG X, DONG J M, LIU M S, et al. Experimental study on ship fouling cleaning by ultrasonic-enhanced submerged cavitation jet: a preliminary study[J]. Ocean Eng, 2022, 258: 111844. doi: 10.1016/j.oceaneng.2022.111844
    [25]
    JANA B, MICHAEL S, FLORA B, et al. Biofouling in marine aquaculture: a review of recent research and developments[J]. Biofouling, 2019, 35(6): 631-648. doi: 10.1080/08927014.2019.1640214
    [26]
    BI C W, ZHAO Y P, DONG G H, et al. Drag on and flow through the hydroid-fouled nets in currents[J]. Ocean Eng, 2018, 161: 195-204. doi: 10.1016/j.oceaneng.2018.05.005
    [27]
    刘海霞, 李秀阁, 张桃, 等. 射流压力对淹没水射流冲击与空蚀效果的影响[J]. 表面技术, 2016, 45(12): 104-110. doi: 10.16490/j.cnki.issn.1001-3660.2016.12.017
    [28]
    葛宜元, 梁秋艳, 王桂莲, 等. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学, 2015: 106-111.
    [29]
    QU X Y, HU F X, KUMAZAWA T, et al. Deformation and drag force of model square fish cages in a uniform flow[J]. Ocean Eng, 2019, 171: 619-624. doi: 10.1016/j.oceaneng.2018.12.016
    [30]
    YUAN T P, HUANG X H, HU Y, et al. Aquaculture net cleaning with cavitation improves biofouling removal[J]. Ocean Eng, 2023, 285: 115241. doi: 10.1016/j.oceaneng.2023.115241
    [31]
    YANG Y F, LI W, SHI W D, et al. Numerical investigation of a high-pressure submerged jet using a cavitation model considering effects of shear stress[J]. Processes, 2019, 7(8): 541. doi: 10.3390/pr7080541
  • Cited by

    Periodical cited type(10)

    1. 梁梓龙,解志龙,姜晓东,陈文彬,罗明,吴旭干. 中华绒螯蟹“长荡湖1号”选育第二代扣蟹阶段养殖性能研究. 水产科技情报. 2024(01): 8-14 .
    2. 解志龙,姜晓东,范陈伟,荆晶,成永旭,吴旭干. 不同规格中华绒螯蟹成蟹的形态特征和组织系数比较. 上海海洋大学学报. 2024(01): 67-76 .
    3. 李凤璐,朱筛成,李嘉尧,成永旭. 黄河口盐碱地区稻蟹种养模式下中华绒螯蟹适宜放养密度的初探. 上海海洋大学学报. 2024(01): 53-66 .
    4. 梁梓龙,姜晓东,张光宝,吴旭干. 超大规格中华绒螯蟹繁育子代生长性能及养殖效果. 中国水产科学. 2024(02): 197-208 .
    5. 张光宝,姜晓东,陈文彬,周文全,罗明,吴旭干. 水草种植模式对全雄中华绒螯蟹成蟹养殖性能和经济效益的影响. 南方水产科学. 2023(02): 107-115 . 本站查看
    6. 张光宝,姜晓东,庄振俊,陈文彬,罗明,成永旭,陈晓武,吴旭干. 中华绒螯蟹“长荡湖1号”新品系选育第二代(G2)生长、性腺发育和养殖性能的研究. 海洋与湖沼. 2023(05): 1444-1453 .
    7. 彭涛,张冬冬,姜晓东,罗明,陈文彬,成永旭,吴旭干. 中华绒螯蟹“长荡湖1号”奇数年群体选育第二代的生长性能和养殖效果评估. 中国水产科学. 2023(10): 1177-1187 .
    8. 殷乐,姜晓东,王海宁,陈瑜,吴旭干. 不同品系中华绒螯蟹土池生态育苗效果比较. 水产科技情报. 2022(04): 193-199 .
    9. 张冬冬,范陈伟,姜晓东,陈瑜,吴旭干. 中华绒螯蟹白壳和绿壳品系生殖性能、胚胎色泽和生化组成比较. 南方水产科学. 2022(03): 102-110 . 本站查看
    10. 庄振俊,张冬冬,姜晓东,陈文彬,陈晓武,成永旭,吴旭干. 中华绒螯蟹“长荡湖1号”奇数年子一代的成蟹养殖性能评估. 海洋渔业. 2022(06): 747-758 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return