CHEN Yuanshuai, PANG Guoliang, HUANG Xiaohua, LI Gen, YUAN Taiping, HU Yu, TAO Qiyou. Influence of net on structural response of jack-up truss net cage[J]. South China Fisheries Science, 2024, 20(1): 43-53. DOI: 10.12131/20230213
Citation: CHEN Yuanshuai, PANG Guoliang, HUANG Xiaohua, LI Gen, YUAN Taiping, HU Yu, TAO Qiyou. Influence of net on structural response of jack-up truss net cage[J]. South China Fisheries Science, 2024, 20(1): 43-53. DOI: 10.12131/20230213

Influence of net on structural response of jack-up truss net cage

More Information
  • Received Date: October 30, 2023
  • Revised Date: December 19, 2023
  • Accepted Date: December 26, 2023
  • Available Online: December 28, 2023
  • Jack-up truss net cage provides a choice for better responding to the extreme environment of deep-sea aquaculture due to its structural characteristics of easily submerging the breeding net cage into the water. As a key component of the breeding net cage, net has an impact on the strength of the main structure of the net cage under environmental loads. This paper focuses on a jack-up truss net cage and establishes its finite element analysis model by using SESAM/GeniE to analyze the main structural response of net cage under the conditions of presence or absence of net and different net parameters. The results indicate that net has a significant impact on the evaluation of main structure response of net cage, especially under high current velocity conditions. Presence of net will increase the stress on the legs of net cage and utilization factor (UF) value of truss significantly, proving that the effect of net cannot be ignored when checking the strength of net cage's main structure. With different mesh grouping ratios, net has little effect on the evaluation result of jack-up truss net cage. In the simulation calculation of the main structure response of net cage, a larger mesh grouping ratio can be considered to improve the calculation efficiency. The change in the number of tie ropes for net has little effect on the evaluation of the main structure response of net cage, but adding more tie ropes can reduce the stress on tie points effectively.

  • [1]
    黄小华, 庞国良, 袁太平, 等. 我国深远海网箱养殖工程与装备技术研究综述[J]. 渔业科学进展, 2022, 43(6): 121-131.
    [2]
    范亚丽, 匡晓峰, 辜坚, 等. 多环境因素下网衣水动力特性试验研究[C]//《水动力学研究与进展》编委会, 中国力学学会, 中国造船工程学会, 等. 第三十三届全国水动力学研讨会论文集, 2022: 8.
    [3]
    吴皓, 刘强, 范为. 养殖网箱网纲和网衣水动力载荷研究[J]. 渔业现代化, 2023, 50(5): 43-51. doi: 10.3969/j.issn.1007-9580.2023.05.006
    [4]
    刘鹤, 吕宇澄, 黄硕, 等. 网衣生物附着对半潜式波浪能养殖平台水动力特性的影响[J]. 船舶工程, 2022, 44(3): 7-13.
    [5]
    曹学睿. 重力式网箱水动力响应数值模拟研究[D]. 大连: 大连理工大学, 2022: 28-39.
    [6]
    白晓东. 深海网箱浮架结构弹性响应及安全疲劳分析[D]. 大连: 大连理工大学, 2019: 17-24.
    [7]
    黄小华, 刘海阳, 胡昱, 等. 深水养殖网箱浮架变形模拟及结构改进设计[J]. 农业工程学报, 2018, 34(15): 44-49. doi: 10.11975/j.issn.1002-6819.2018.15.006
    [8]
    胡金鹏, 张旋. 极端海况下重力式网箱系泊系统数值模拟[J]. 大连理工大学学报, 2021, 61(6): 615-622. doi: 10.7511/dllgxb202106009
    [9]
    程晖, 黄六一, 倪益, 等. 水流条件下单点系泊不同结构“钻石型”重力式网箱的水动力特性数值模拟[J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 161-170.
    [10]
    王银涛, 王千, 郭晓宇. 规则波作用下网箱水动力的实验研究[C]//中国力学学会. 中国力学大会论文集 (第五册), 2022: 1.
    [11]
    刘航飞. 一种深远海半潜式养殖平台水动力特性研究[D]. 大连理工大学, 2023: 27-34.
    [12]
    崔勇, 关长涛, 黄滨, 等. 波浪作用下双层网底鲆鲽网箱水动力特性的数值模拟[J]. 渔业科学进展, 2019, 40(6): 18-24.
    [13]
    张婧, 孙立文, 周游, 等. 组合钢架式网箱水动力性能分析[J]. 渔业现代化, 2022, 49(6): 27-34. doi: 10.3969/j.issn.1007-9580.2022.06.004
    [14]
    LEI Y, LI W, ZHENG X Y, et al. A floating system integrating a wind turbine with a steel fish farming cage: experimental validation of the hydrodynamic model[J]. Mar Struct, 2024, 93: 103525. doi: 10.1016/j.marstruc.2023.103525
    [15]
    陈炫光, 陈俊华, 董新龙, 等. 波浪作用下串联浮筒对船型网箱锚泊系统的受力影响分析[J]. 宁波大学学报(理工版), 2020, 33(3): 99-104.
    [16]
    张新昊. 大型深海养殖网箱平台设计及单点系泊系统设计研究[D]. 镇江: 江苏科技大学, 2020: 48-53.
    [17]
    张松, 庞国良, 黄小华, 等. 船型桁架结构网箱系泊方式优选及影响参数分析[J]. 渔业现代化, 2022, 49(5): 97-105.
    [18]
    黄小华, 王芳芳, 刘海阳, 等. 系泊和压载方式对半潜式渔场平台动力特性的影响[J]. 农业工程学报, 2019, 35(15): 48-53. doi: 10.11975/j.issn.1002-6819.2019.15.007
    [19]
    XU H, RUI S J, SHEN K M, et al. Investigations on the mooring safety considering the coupling effect of the mooring line snap tension and anchor out-of-plane loading[J]. Appl Ocean Res, 2023, 141: 103753. doi: 10.1016/j.apor.2023.103753
    [20]
    YUAN L H, CHEN Y, ZAN Y F, et al. A novel hybrid approach to mooring tension prediction for semi-submersible offshore platforms[J]. Ocean Eng, 2023, 287: 115776. doi: 10.1016/j.oceaneng.2023.115776
    [21]
    李亚杰, 闫中杰, 刘扬, 等. 海上风电与海洋养殖融合发展现状与展望[J]. 船舶工程, 2023, 45(S1): 166-170.
    [22]
    王朋超. 船舶与深水网箱系泊系统水动力分析[D]. 青岛: 青岛科技大学, 2023: 21-25.
    [23]
    李贺. 大型网架式深海网箱结构强度分析[D]. 哈尔滨: 哈尔滨工程大学, 2022: 22-26.
    [24]
    孙树政, 李辉, MUK C O, 等. 网架式网箱浮架结构设计载荷与屈服强度分析[J]. 哈尔滨工程大学学报, 2022, 43(3): 340-347.
    [25]
    柴佳瑜, 顾赛文, 张兆德. 浪、流作用下大型网箱结构强度的数值模拟[J]. 船舶工程, 2021, 43(4): 24-31.
    [26]
    李昊瑾. 网架式养殖网箱结构强度分析方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2022: 15-21.
    [27]
    汤建锋. 深海网箱平台结构屈服强度与疲劳强度研究[D]. 哈尔滨: 哈尔滨工程大学, 2022: 11-18.
    [28]
    庞国良, 黄小华, 陈超核, 等. 自升式深海网箱不同工况下结构安全性评估研究[J]. 渔业科学进展, 2022, 43(6): 56-68.
    [29]
    罗俊, 陈胜, 段家辉, 等. 单元升降式网箱强度校核[J]. 海洋技术学报, 2023, 42(1): 98-106. doi: 10.3969/j.issn.1003-2029.2023.01.011
    [30]
    施兴华, 周游, 钱佶麒, 等. 基于水动力性能的网箱网衣网目群化数值模拟方法研究[J]. 渔业现代化, 2021, 48(3): 74-79. doi: 10.3969/j.issn.1007-9580.2021.03.010

Catalog

    Article views (91) PDF downloads (45) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return