YAO Zidan, HUANG Xiaohua, LI Gen, HU Yu, PANG Guoliang, YUAN Taiping. Research on nighttime intelligent monitoring method for deep-sea cage fish school based on water surface infrared images[J]. South China Fisheries Science, 2024, 20(1): 81-88. DOI: 10.12131/20230208
Citation: YAO Zidan, HUANG Xiaohua, LI Gen, HU Yu, PANG Guoliang, YUAN Taiping. Research on nighttime intelligent monitoring method for deep-sea cage fish school based on water surface infrared images[J]. South China Fisheries Science, 2024, 20(1): 81-88. DOI: 10.12131/20230208

Research on nighttime intelligent monitoring method for deep-sea cage fish school based on water surface infrared images

More Information
  • Received Date: October 30, 2023
  • Revised Date: November 23, 2023
  • Accepted Date: December 10, 2023
  • Available Online: December 12, 2023
  • Obtaining fish school information on its size and behavior through fish school monitoring is an important way to improve the efficiency of deep sea aquaculture and reduce costs. In this study, an intelligent fish school monitoring method is proposed by using infrared cameras mounted on a net cage for data collection, in addition to the latest deep learning techniques for model training. The method involves three functional modules: fish detection, fish segmentation and fish pose determination. Firstly, fish images were collected by infrared cameras and manually annotated to build datasets, while an improved faster RCNN model that uses Mobilenetv2 and FPN network as feature extractors to improve detection accuracy is adopted to output bounding boxes of individual fish. Secondly, the top 20% of brightness pixels in the block map were selected as segmentation prompt points, and the image was segmented using Segment Anything Model to generate fish segmentation results. Finally, the fish pose information was determined by applying elliptical fitting using fish segmentation results. After 100 epochs of training, the average precision (AP) of the improved Faster RCNN model reached 84.5%, and the detection time per image was 0.042 s. The results indicate that the proposed method can achieve automatic monitoring of fish school on infrared images and extract effective information.

  • [1]
    2022年全国渔业经济统计公报发布[J]. 水产科技情报, 2023, 50(4): 270.
    [2]
    2021年全国渔业经济统计公报[J]. 水产科技情报, 2022, 49(5): 313.
    [3]
    王向仁. “蓝色粮仓”行业发展现状、问题制约及对策建议[J]. 农业灾害研究, 2023, 13(8): 286-288.
    [4]
    本刊讯. 农业农村部部署深远海养殖工作[J]. 中国水产, 2023(7): 7.
    [5]
    YUAN B, CUI Y H, AN D, et al. Marine environmental pollution and offshore aquaculture structure: evidence from China[J]. Front Mar Sci, 2023, 9: 979003. doi: 10.3389/fmars.2022.979003
    [6]
    张涵钰, 李振波, 李蔚然, 等. 基于机器视觉的水产养殖计数研究综述[J]. 计算机应用, 2023, 43(9): 2970-2982.
    [7]
    DHAKAL A, PANDEY M, KAYASTHA P, et al. An overview of status and development trend of aquaculture and fisheries in Nepal[J]. Adv Agric, 2022: 1-16.
    [8]
    WANG C, LI Z, WANG T, et al. Intelligent fish farm-the future of aquaculture[J]. Aquac Int, 2021, 29(6): 2681-2711. doi: 10.1007/s10499-021-00773-8
    [9]
    郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906-922.
    [10]
    陈超, 赵春蕾, 张春祥, 等. 物联网声呐感知研究综述[J]. 计算机科学, 2020, 47(10): 9-18.
    [11]
    VOLOSHCHENKO V Y, VOLOSHCHENKO A P, VOLOSHCHENKO E V. Seadrome: unmanned amphibious aerial vehicle sonar equipment for landing-takeoff and water area navigation[J]. Rus Aeronaut, 2020, 63(1): 155-163. doi: 10.3103/S1068799820010225
    [12]
    崔智强, 祝捍皓, 宋伟华, 等. 一种基于前视声呐的养殖网箱内鱼群数量评估方法[J]. 渔业现代化, 2023, 50(4): 107-117.
    [13]
    BENOIT-BIRD K J, WALUK C M. Remote acoustic detection and characterization of fish schooling behavior[J]. J Acoust Soc Am, 2021, 150(6): 4329-4342. doi: 10.1121/10.0007485
    [14]
    YUAN X W, JIANG Y Z, ZHANG H, et al. Quantitative assessment of fish assemblages on artificial reefs using acoustic and conventional netting methods, in Xiangshan Bay, Zhejiang Province, China[J]. J Appl Ichthyol, 2021, 37(3): 389-399. doi: 10.1111/jai.14157
    [15]
    崔斌. 视觉识别技术在智慧实验室中的应用研究[J]. 信息与电脑(理论版), 2023, 35(8): 172-174.
    [16]
    李少波, 杨玲, 于辉辉, 等. 水下鱼类品种识别模型与实时识别系统[J]. 智慧农业(中英文), 2022, 4(1): 130-139.
    [17]
    黄平. 基于深度学习的鱼类摄食行为识别及精准养殖研究[D]. 南宁: 广西大学, 2022: 7.
    [18]
    LAI Y C, HUANG R J, KUO Y P, et al. Underwater target tracking via 3D convolutional networks[C]//2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). IEEE, 2019: 485-490.
    [19]
    傅梁著. 基于视觉感知技术的鱼类行为辨别方法研究[D]. 大连: 大连理工大学, 2022: 15.
    [20]
    FENG S X, YANG X T, LIU Y, et al. Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network[J]. Aquac Engin, 2022: 102244.
    [21]
    YANG L, CHEN Y Y, SHEN T, et al. A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture[J]. Comput Electron Agr, 2023, 211: 108005. doi: 10.1016/j.compag.2023.108005
    [22]
    黄小华, 庞国良, 袁太平, 等. 我国深远海网箱养殖工程与装备技术研究综述[J]. 渔业科学进展, 2022, 43(6): 121-131.
    [23]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with Region Proposal Networks[J]. IEEE T Pattern Anal, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [24]
    YASHASWINI K, SRINIVASA A H, GOWRISHANKAR S. Fish species detection using deep learning for industrial applications[C]//Proceedings of Third International Conference on Communication, Computing and Electronics Systems: ICCCES 2021. Singapore: Springer Singapore, 2022: 401-408.
    [25]
    YANG X T, ZHANG S, LIU J T, et al. Deep learning for smart fish farming: applications, opportunities and challenges[J]. Rev Aquac, 2021, 13(1): 66-90. doi: 10.1111/raq.12464
    [26]
    姚文清, 李盛, 王元阳. 基于深度学习的目标检测算法综述[J]. 科技资讯, 2023, 21(16): 185-188.
    [27]
    WANG H, JIANG S F, GAO Y. Improved object detection algorithm based on Faster RCNN[J]. J Physics: Conference Series, 2022, 2395(1): 012069. doi: 10.1088/1742-6596/2395/1/012069
    [28]
    LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
    [29]
    SANDLER M, HOWARD A, ZHU M L, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
    [30]
    康晓凤, 厉丹. 基于SSD-MobileNetv2和FPN的人脸检测[J]. 电子器件, 2023, 46(2): 455-462.
    [31]
    KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[J]. Arxiv Preprint Arxiv: 2304.02643, 2023.
    [32]
    黄佳慧. 基于计算机视觉的光条中心点椭圆拟合算法[J]. 信息技术与信息化, 2023(4): 137-140.
    [33]
    王景洲. 基于平面点集最佳拟合椭圆方法的优化[J]. 电子技术与软件工程, 2022(21): 198-202.
  • Related Articles

    [1]XU Bo, YUAN Hongchun. Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network[J]. South China Fisheries Science, 2024, 20(6): 145-154. DOI: 10.12131/20240200
    [2]QIAN Cheng, ZHANG Jiapeng, TU Xueying, LIU Huang, QIAO Gan, LIU Shijing. Turbot fish egg recognition and counting method based on CBAM-UNet[J]. South China Fisheries Science, 2024, 20(6): 132-144. DOI: 10.12131/20240123
    [3]ZHANG Hongjiao, ZHANG Cunxi, WANG Rui, WANG Ke, QIAO Qian. Freshness recognition of small yellow croaker based on image processing and improved DenseNet network[J]. South China Fisheries Science, 2024, 20(3): 133-142. DOI: 10.12131/20230241
    [4]GONG Yuanjin, YANG Shujie. Dynamic water surface environment perception SLAM algorithm based on visual semantics and point-line fusion for unmanned surface vessels[J]. South China Fisheries Science, 2024, 20(3): 120-132. DOI: 10.12131/20240019
    [5]YUAN Yongming, SHI Pei. Study on fish movement monitoring method based on image processing[J]. South China Fisheries Science, 2018, 14(5): 109-114. DOI: 10.3969/j.issn.2095-0780.2018.05.014
    [6]LI Laihao, SUN Bolun, ZHAO Donghao. Research progress in detection and preparation methods for tetrodotoxin[J]. South China Fisheries Science, 2018, 14(3): 126-132. DOI: 10.3969/j.issn.2095-0780.2018.03.016
    [7]TANG Xianming, WANG Yingrui, LIU Cui, CHEN Fuxiao, YIN Yi, LIU Tao. Prelimary study of segment culture of Kappaphycus alvarezii[J]. South China Fisheries Science, 2014, 10(2): 36-41. DOI: 10.3969/j.issn.2095-0780.2014.02.005
    [8]HUANG Chunli, HUANG He, LIU Wenxia, GAO Ping, HUANG Guofang, LI Zhiqing, CHENG Hong, LUO Lin. Research progress on residual toxicity and detection methods of melamine[J]. South China Fisheries Science, 2011, 7(3): 76-80. DOI: 10.3969/j.issn.2095-0780.2011.03.014
    [9]ZHAO Fei, ZOU Weimin. Application of LAMP in the rapid detection of aquatic animal pathogens[J]. South China Fisheries Science, 2007, 3(2): 71-75.
    [10]WANG Li, LIN Hong, CAO Limin. Detection of aminoglycosides in foods of animal origin[J]. South China Fisheries Science, 2006, 2(1): 76-79.

Catalog

    Article views (319) PDF downloads (58) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return