Citation: | YAO Zidan, HUANG Xiaohua, LI Gen, HU Yu, PANG Guoliang, YUAN Taiping. Research on nighttime intelligent monitoring method for deep-sea cage fish school based on water surface infrared images[J]. South China Fisheries Science, 2024, 20(1): 81-88. DOI: 10.12131/20230208 |
Obtaining fish school information on its size and behavior through fish school monitoring is an important way to improve the efficiency of deep sea aquaculture and reduce costs. In this study, an intelligent fish school monitoring method is proposed by using infrared cameras mounted on a net cage for data collection, in addition to the latest deep learning techniques for model training. The method involves three functional modules: fish detection, fish segmentation and fish pose determination. Firstly, fish images were collected by infrared cameras and manually annotated to build datasets, while an improved faster RCNN model that uses Mobilenetv2 and FPN network as feature extractors to improve detection accuracy is adopted to output bounding boxes of individual fish. Secondly, the top 20% of brightness pixels in the block map were selected as segmentation prompt points, and the image was segmented using Segment Anything Model to generate fish segmentation results. Finally, the fish pose information was determined by applying elliptical fitting using fish segmentation results. After 100 epochs of training, the average precision (AP) of the improved Faster RCNN model reached 84.5%, and the detection time per image was 0.042 s. The results indicate that the proposed method can achieve automatic monitoring of fish school on infrared images and extract effective information.
[1] |
2022年全国渔业经济统计公报发布[J]. 水产科技情报, 2023, 50(4): 270.
|
[2] |
2021年全国渔业经济统计公报[J]. 水产科技情报, 2022, 49(5): 313.
|
[3] |
王向仁. “蓝色粮仓”行业发展现状、问题制约及对策建议[J]. 农业灾害研究, 2023, 13(8): 286-288.
|
[4] |
本刊讯. 农业农村部部署深远海养殖工作[J]. 中国水产, 2023(7): 7.
|
[5] |
YUAN B, CUI Y H, AN D, et al. Marine environmental pollution and offshore aquaculture structure: evidence from China[J]. Front Mar Sci, 2023, 9: 979003. doi: 10.3389/fmars.2022.979003
|
[6] |
张涵钰, 李振波, 李蔚然, 等. 基于机器视觉的水产养殖计数研究综述[J]. 计算机应用, 2023, 43(9): 2970-2982.
|
[7] |
DHAKAL A, PANDEY M, KAYASTHA P, et al. An overview of status and development trend of aquaculture and fisheries in Nepal[J]. Adv Agric, 2022: 1-16.
|
[8] |
WANG C, LI Z, WANG T, et al. Intelligent fish farm-the future of aquaculture[J]. Aquac Int, 2021, 29(6): 2681-2711. doi: 10.1007/s10499-021-00773-8
|
[9] |
郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906-922.
|
[10] |
陈超, 赵春蕾, 张春祥, 等. 物联网声呐感知研究综述[J]. 计算机科学, 2020, 47(10): 9-18.
|
[11] |
VOLOSHCHENKO V Y, VOLOSHCHENKO A P, VOLOSHCHENKO E V. Seadrome: unmanned amphibious aerial vehicle sonar equipment for landing-takeoff and water area navigation[J]. Rus Aeronaut, 2020, 63(1): 155-163. doi: 10.3103/S1068799820010225
|
[12] |
崔智强, 祝捍皓, 宋伟华, 等. 一种基于前视声呐的养殖网箱内鱼群数量评估方法[J]. 渔业现代化, 2023, 50(4): 107-117.
|
[13] |
BENOIT-BIRD K J, WALUK C M. Remote acoustic detection and characterization of fish schooling behavior[J]. J Acoust Soc Am, 2021, 150(6): 4329-4342. doi: 10.1121/10.0007485
|
[14] |
YUAN X W, JIANG Y Z, ZHANG H, et al. Quantitative assessment of fish assemblages on artificial reefs using acoustic and conventional netting methods, in Xiangshan Bay, Zhejiang Province, China[J]. J Appl Ichthyol, 2021, 37(3): 389-399. doi: 10.1111/jai.14157
|
[15] |
崔斌. 视觉识别技术在智慧实验室中的应用研究[J]. 信息与电脑(理论版), 2023, 35(8): 172-174.
|
[16] |
李少波, 杨玲, 于辉辉, 等. 水下鱼类品种识别模型与实时识别系统[J]. 智慧农业(中英文), 2022, 4(1): 130-139.
|
[17] |
黄平. 基于深度学习的鱼类摄食行为识别及精准养殖研究[D]. 南宁: 广西大学, 2022: 7.
|
[18] |
LAI Y C, HUANG R J, KUO Y P, et al. Underwater target tracking via 3D convolutional networks[C]//2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). IEEE, 2019: 485-490.
|
[19] |
傅梁著. 基于视觉感知技术的鱼类行为辨别方法研究[D]. 大连: 大连理工大学, 2022: 15.
|
[20] |
FENG S X, YANG X T, LIU Y, et al. Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network[J]. Aquac Engin, 2022: 102244.
|
[21] |
YANG L, CHEN Y Y, SHEN T, et al. A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture[J]. Comput Electron Agr, 2023, 211: 108005. doi: 10.1016/j.compag.2023.108005
|
[22] |
黄小华, 庞国良, 袁太平, 等. 我国深远海网箱养殖工程与装备技术研究综述[J]. 渔业科学进展, 2022, 43(6): 121-131.
|
[23] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with Region Proposal Networks[J]. IEEE T Pattern Anal, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[24] |
YASHASWINI K, SRINIVASA A H, GOWRISHANKAR S. Fish species detection using deep learning for industrial applications[C]//Proceedings of Third International Conference on Communication, Computing and Electronics Systems: ICCCES 2021. Singapore: Springer Singapore, 2022: 401-408.
|
[25] |
YANG X T, ZHANG S, LIU J T, et al. Deep learning for smart fish farming: applications, opportunities and challenges[J]. Rev Aquac, 2021, 13(1): 66-90. doi: 10.1111/raq.12464
|
[26] |
姚文清, 李盛, 王元阳. 基于深度学习的目标检测算法综述[J]. 科技资讯, 2023, 21(16): 185-188.
|
[27] |
WANG H, JIANG S F, GAO Y. Improved object detection algorithm based on Faster RCNN[J]. J Physics: Conference Series, 2022, 2395(1): 012069. doi: 10.1088/1742-6596/2395/1/012069
|
[28] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
|
[29] |
SANDLER M, HOWARD A, ZHU M L, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
|
[30] |
康晓凤, 厉丹. 基于SSD-MobileNetv2和FPN的人脸检测[J]. 电子器件, 2023, 46(2): 455-462.
|
[31] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[J]. Arxiv Preprint Arxiv: 2304.02643, 2023.
|
[32] |
黄佳慧. 基于计算机视觉的光条中心点椭圆拟合算法[J]. 信息技术与信息化, 2023(4): 137-140.
|
[33] |
王景洲. 基于平面点集最佳拟合椭圆方法的优化[J]. 电子技术与软件工程, 2022(21): 198-202.
|
1. |
黄晓兰,王苗苗,刘海静,杨奇慧,张会兰,陈厚宏,黎杰,徐静,陈岗富,李华涛. 当归副产物对颗粒饲料的保护作用及其对鲫生长和缺氧应激的影响. 动物营养学报. 2025(02): 1173-1187 .
![]() | |
2. |
朱文婷,李文嘉,宣雄智,赵娟. 渔用中草药种类、作用机理及应用效果研究进展. 中国饲料. 2024(05): 94-100 .
![]() | |
3. |
杨鹏,李锐,查红刚,叶志祥,史庆超,张志勇. 复合植物多糖对澳洲淡水龙虾血清生化指标的影响. 现代畜牧兽医. 2023(06): 36-39 .
![]() | |
4. |
李蕾,蒋昕彧,朱雷,孔祥会. 多糖类免疫增强剂在鱼类养殖中的应用研究进展. 水产学杂志. 2023(06): 127-135+145 .
![]() | |
5. |
刘辉,鹿瑶,辛运腾,董乐,董福霖,林基亮,于朝磊,张黎黎. 饲料中添加植物乳杆菌对花鲈生长性能、血清生化指标及抗哈维弧菌感染的影响. 饲料研究. 2023(23): 49-55 .
![]() | |
6. |
曹雪,孙佳,杨质楠,梁爽,李月红. 中草药在水产动物养殖中的研究进展. 饲料研究. 2023(24): 133-137 .
![]() | |
7. |
刘永,闫世雄,杜彦丽,何洋,施红梅,王坤,豆腾飞,刘丽仙,申志超,贾俊静,葛长荣. 植物多糖在鱼类养殖中的应用研究进展. 山西农业科学. 2022(02): 272-280 .
![]() | |
8. |
肖芳,陈涛,伍振煌,王俊龙. 植物多糖的提取工艺、生物学功能及其在动物生产中的研究进展. 饲料研究. 2022(14): 125-128 .
![]() | |
9. |
韦宏杰,李雪鹤,吴远彩,易远名,朱东文君,杨奇慧,谭北平. 月桂酸单甘油酯对凡纳滨对虾生长、肌肉氨基酸、非特异性免疫及肠道菌群的影响. 水产学报. 2022(10): 1912-1926 .
![]() | |
10. |
卫明亮,张志伟,张志勇,林志杰,祝斐,贾超峰,孟乾,徐大凤,张曹进. 冷应激对黑鲷组织损伤及细胞凋亡基因表达的影响. 南方水产科学. 2022(05): 110-117 .
![]() | |
11. |
杨欣仪,类延菊,阳佩蓉,蔡佳玲,杨品红,杨春英. 植物多糖的生物学功能及其对鱼类健康的影响. 饲料研究. 2022(20): 130-136 .
![]() | |
12. |
贾慧凝,侍苗苗,卞永乐,侍崇敬,刘恒蔚,宋学宏,秦粉菊. 纳米硒对低氧胁迫下中华绒螯蟹免疫保护和抗氧化能力的影响. 南方水产科学. 2022(06): 100-109 .
![]() | |
13. |
袁仲瑾,岑剑伟,李来好,杨贤庆,黄卉,魏涯,郝淑贤,赵永强,王悦齐,林织. 低温暂养对珍珠龙胆石斑鱼存活、非特异性免疫及抗氧化指标的影响. 南方水产科学. 2022(06): 118-126 .
![]() | |
14. |
李忠琴,张新艳,杨求华,林茂,江兴龙,翟少伟. 五种中草药复方体外激活花鳗鲡(Anguilla marmorata)外周血白细胞活性的评价. 海洋与湖沼. 2022(06): 1487-1493 .
![]() | |
15. |
孙彩云,董宏标,王文豪,李勇,古群红,段亚飞,张家松,许晓东. 月桂酸单甘油酯对花鲈脂质代谢的影响. 南方水产科学. 2021(01): 67-75 .
![]() | |
16. |
虞为,杨育凯,林黑着,黄小林,黄忠,李涛,周传朋,马振华,荀鹏伟,杨长平. 牛磺酸对花鲈生长性能、消化酶活性、抗氧化能力及免疫指标的影响. 南方水产科学. 2021(02): 78-86 .
![]() | |
17. |
杨蕊,周胜杰,方伟,马振华. 营养强化对卵形鲳鲹仔、稚鱼骨骼发育基因表达的影响. 水产科技情报. 2021(03): 126-131 .
![]() | |
18. |
曾祥兵,董宏标,韦政坤,段亚飞,陈健,张慧,孙彩云,许晓东,张家松. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响. 南方水产科学. 2021(04): 49-57 .
![]() | |
19. |
韩梦瑶,王晓梅,王占旗,叶金云,张忠山. 天然活性多糖在水产动物养殖中的应用. 水产学杂志. 2021(04): 85-92 .
![]() | |
20. |
李正花,周建虹,陈土艳. 八珍汤加味治疗气滞血瘀证月经不调患者的疗效及作用机制探析. 世界中西医结合杂志. 2021(09): 1719-1723 .
![]() | |
21. |
杨大俏,王锦旭,李来好,杨贤庆,马海霞,胡晓. 近江牡蛎膜分离联产制备多糖多肽及其功能特性研究. 大连海洋大学学报. 2020(01): 126-133 .
![]() | |
22. |
杨大俏,王锦旭,李来好,杨贤庆,马海霞,岑剑伟,王悦齐. 近江牡蛎多糖的结构鉴定及免疫调节能力分析. 食品科学. 2020(10): 38-46 .
![]() | |
23. |
李琛琛,何建,纪鹏,魏彦明,刘胜利,袁子文,张晓松,文艳巧,张亚辉,华永丽,姚万玲. 当归多糖对头孢噻呋钠联合LPS致鸡肝损伤的防治效果. 动物医学进展. 2020(06): 74-80 .
![]() | |
24. |
杨玲,胡睿智,夏嗣廷,贺建华. 植物多糖的功能性研究进展及其在动物生产中的应用. 动物营养学报. 2019(06): 2534-2543 .
![]() | |
25. |
虞为,杨育凯,陈智彬,林黑着,黄小林,周传朋,杨铿,曹煜成,黄忠,马振华,李涛,王珺,王芸,荀鹏伟,黄倩倩,于万峰. 饲料中添加螺旋藻对花鲈生长性能、消化酶活性、血液学指标及抗氧化能力的影响. 南方水产科学. 2019(03): 57-67 .
![]() | |
26. |
赵香菊,刘秀玲,王中华. 大蒜多糖对肉鸡血清生化指标及抗氧化能力的影响. 中国家禽. 2019(20): 52-54 .
![]() |