YAO Zubing, LIU Yuming, HONG Lichuan, LIU Yifeng, WANG Shuo, XIE Songguang, SONG Yiqing. Habitat suitability of crown-of-thorns starfish and Titan triggerfish and their response to climate change based on ensemble species distribution model[J]. South China Fisheries Science, 2024, 20(4): 56-67. DOI: 10.12131/20230201
Citation: YAO Zubing, LIU Yuming, HONG Lichuan, LIU Yifeng, WANG Shuo, XIE Songguang, SONG Yiqing. Habitat suitability of crown-of-thorns starfish and Titan triggerfish and their response to climate change based on ensemble species distribution model[J]. South China Fisheries Science, 2024, 20(4): 56-67. DOI: 10.12131/20230201

Habitat suitability of crown-of-thorns starfish and Titan triggerfish and their response to climate change based on ensemble species distribution model

More Information
  • Received Date: October 19, 2023
  • Revised Date: February 27, 2024
  • Accepted Date: April 14, 2024
  • Available Online: April 23, 2024
  • The alterations in marine environments caused by global climate change have potential impacts on the suitable habitat zones for marine organisms. Based on the occurrence data for crown-of-thorns starfish (Acanthaster planci) and its key predator Titan triggerfish (Balistoides viridescens), in addition with environmental variables, we developed ensemble species distribution models by using seven algorithmic frameworks within the BIOMOD2 platform. These models predict current and future potential habitat suitability under various climate change scenarios. The results show that: 1) The ensemble species distribution model of Committee Averaging (CA) and Weighted Mean of Probabilities (WM) for crown-of-thorns starfish and Titan triggerfish show that the true skill statistic (TSS) and receiver operating curve (ROC) values are 0.96, 0.99 and 0.97, 0.99, respectively, which outperforms the single model and provides accurate predictions of the spatial distribution patterns for both species. 2) Temperature and land distance are the primary factors influencing the spatial distribution of crown-of-thorns starfish, while temperature, dissolved oxygen and land distance are crical for Titan triggerfish. 3) The current potentially suitable habitats for both species are primarily located in the Great Barrier Reef of Australia, Indonesia, the South China Sea and the Red Sea. Titan triggerfish's potential suitable habitats are more extensive than those of crown-of-thorns starfish. Under future climate scenarios, both species' potential ranges are expected to broaden and migrate towards higher latitudes.

  • [1]
    BERTRAND R, LENOIR J, PIEDALLU C, et al. Changes in plant community composition lag behind climate warming in lowland forests[J]. Nature, 2011, 479(7374): 517-520. doi: 10.1038/nature10548
    [2]
    CHEUNG W W L, SARMIENTO J L, DUNNE J, et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems[J]. Nat Clim Chang, 2013, 3(3): 254-258. doi: 10.1038/nclimate1691
    [3]
    RIJNSDORP A D, PECK M A, ENGELHARD G H, et al. Resolving the effect of climate change on fish populations[J]. ICES J Mar Sci, 2009, 66(7): 1570-1583. doi: 10.1093/icesjms/fsp056
    [4]
    KLEYPAS J A. Climate change and tropical marine ecosystems: a review with an emphasis on coral reefs[J]. Cuadernos de Investigación UNED, 2019, 11(1): 24-35.
    [5]
    HOEY A S, HOWELLS E, JOHANSEN J L, et al. Recent advances in understanding the effects of climate change on coral reefs[J]. Diversity, 2016, 8(2): 12.
    [6]
    李元超, 梁计林, 吴钟解, 等. 长棘海星的暴发及其防治[J]. 海洋开发与管理, 2019, 36(8): 9-12.
    [7]
    MORAN P J, DE'ATH G, BAKER V J, et al. Pattern of outbreaks of crown-of-thorns starfish (Acanthaster planci L.) along the Great Barrier Reef since 1966[J]. Mar Freshw Res, 1992, 43(3): 555-567. doi: 10.1071/MF9920555
    [8]
    DE'ATH G, FABRICIUS K E, SWEATMAN H, et al. The 27-year decline of coral cover on the Great Barrier Reef and its causes[J]. Proc Natl Acad Sci USA, 2012, 109(44): 17995-17999. doi: 10.1073/pnas.1208909109
    [9]
    姚秋翠, 余克服, 廖芝衡, 等. 长棘海星暴发及其对珊瑚礁的生态影响研究进展[J]. 生态学报, 2022, 42(18): 7517-7528.
    [10]
    SUPIWONG W, TANOMTONG A, JUMRUSTHANASAN S, et al. Standardized karyotype and idiogram of titan triggerfish, Bali stoides viridescens (Tetraodontiformes, Balistidae) in Thailand[J]. Cytologia, 2013, 78(4): 345-351. doi: 10.1508/cytologia.78.345
    [11]
    COWAN Z L, PRATCHETT M, MESSMER V, et al. Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks[J]. Diversity, 2017, 9(1): 7. doi: 10.3390/d9010007
    [12]
    ELITH J, LEATHWICK J R. Species distribution models: ecological explanation and prediction across space and time[J]. Annu Rev Ecol Evol Syst, 2009, 40: 677-697. doi: 10.1146/annurev.ecolsys.110308.120159
    [13]
    MARTÍNEZ-MINAYA J, CAMELETTI M, CONESA D, et al. Species distribution modeling: a statistical review with focus in spatio-temporal issues[J]. Stoch Environ Res Risk Assess, 2018, 32: 3227-3244. doi: 10.1007/s00477-018-1548-7
    [14]
    FEITOSA L M, MARTINS L P, de SOUZA JUNIOR L A, et al. Potential distribution and population trends of the smalltail shark Carcharhinus porosus inferred from species distribution models and historical catch data[J]. Aquat Conserv, 2020, 30(5): 882-891. doi: 10.1002/aqc.3293
    [15]
    ZHANG Z X, XU S Y, CAPINHA C, et al. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica[J]. Ecol Indic, 2019, 104: 333-340. doi: 10.1016/j.ecolind.2019.05.023
    [16]
    WILMES J, MATTHEWS S, SCHULTZ D, et al. Modelling growth of juvenile crown-of-thorns starfish on the northern Great Barrier Reef[J]. Diversity, 2016, 9(1): 1. doi: 10.3390/d9010001
    [17]
    KEESING J K, HALFORD A R, HALL K C. Mortality rates of small juvenile crown-of-thorns starfish Acanthaster planci on the Great Barrier Reef: implications for population size and larval settlement thresholds for outbreaks[J]. Mar Ecol Prog Ser, 2018, 597: 179-190. doi: 10.3354/meps12606
    [18]
    SILL S R, DAWSON T P. Climate change impacts on the ecological dynamics of two coral reef species, the humphead wrasse (Cheilinus undulatus) and crown-of-thorns starfish (Ancanthaster planci)[J]. Ecol Inform, 2021, 65: 101399. doi: 10.1016/j.ecoinf.2021.101399
    [19]
    TIETBOHL M D, HARDENSTINE R S, TANABE L K, et al. Intentional partial beaching in a coral reef fish: a newly recorded hunting behaviour of titan triggerfish, Balistoides viridescens[J]. J Fish Biol, 2020, 97(5): 1569-1572. doi: 10.1111/jfb.14513
    [20]
    BARBET-MASSIN M, JIGUET F, ALBERT C H, et al. Selecting pseudo-absences for species distribution models: how, where and how many?[J]. Methods Ecol Evol, 2012, 3(2): 327-338. doi: 10.1111/j.2041-210X.2011.00172.x
    [21]
    DORMANN C F, ELITH J, BACHER S, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance[J]. Ecography, 2013, 36(1): 27-46. doi: 10.1111/j.1600-0587.2012.07348.x
    [22]
    ASSIS J, TYBERGHEIN L, BOSCH S, et al. Bio-ORACLE v2. 0: extending marine data layers for bioclimatic modelling[J]. Glob Ecol Biogeogr, 2018, 27(3): 277-284.
    [23]
    张雷, 刘世荣, 孙鹏森, 等. 气候变化对物种分布影响模拟中的不确定性组分分割与制图: 以油松为例[J]. 生态学报, 2011, 31(19): 5749-5761.
    [24]
    GUO Y L, LI X, ZHAO Z F, et al. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China[J]. Sci Total Environ, 2019, 648: 1-11. doi: 10.1016/j.scitotenv.2018.07.465
    [25]
    余元钧, 罗火林, 刘南南, 等. 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响[J]. 生物多样性, 2020, 28(7): 769-778.
    [26]
    郭恺琦, 姜小龙, 徐刚标. 薄片青冈潜在适生区及气候变化对其分布的影响[J]. 生态学杂志, 2021, 40(8): 2563-2574.
    [27]
    REISS H, CUNZE S, KÖNIG K, et al. Species distribution modelling of marine benthos: a North Sea case study[J]. Mar Ecol Prog Ser, 2011, 442: 71-86. doi: 10.3354/meps09391
    [28]
    WEINERT M, MATHIS M, KRÖNCKE I, et al. Climate change effects on marine protected areas: projected decline of benthic species in the North Sea[J]. Mar Environ Res, 2021, 163: 105230. doi: 10.1016/j.marenvres.2020.105230
    [29]
    邢衍阔, 王林龙, 刘敏, 等. 基于物种分布模型的全球绿海龟空间分布及洄游廊道预测[J]. 中国水产科学, 2021, 28(10): 1337-1345.
    [30]
    WILSON M W, RIDLON A D, GAYNOR K M, et al. Ecological impacts of human-induced animal behaviour change[J]. Ecol Lett, 2020, 23(10): 1522-1536. doi: 10.1111/ele.13571
    [31]
    HUGHES R N, HUGHES D J, SMITH I P. Limits to understanding and managing outbreaks of crown-of-thorns starfish (Acan thaster spp.)[J]. Oceanogr Mar Biol, 2014, 52: 133-200.
    [32]
    LAMARE M, PECORINO D, HARDY N, et al. The thermal tolerance of crown-of-thorns (Acanthaster planci) embryos and bipinnaria larvae: implications for spatial and temporal variation in adult populations[J]. Coral Reefs, 2014, 33: 207-219. doi: 10.1007/s00338-013-1112-3
    [33]
    ANDREWS S, LEROUX S J, FORTIN M J. Modelling the spatial-temporal distributions and associated determining factors of a keystone pelagic fish[J]. ICES J Mar Sci, 2020, 77(7/8): 2776-2789.
    [34]
    SILVA C, LEIVA F, LASTRA J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile[J]. Fish Oceanogr, 2019, 28(2): 171-182. doi: 10.1111/fog.12400
    [35]
    URCÁDIZ-CÁZARES F J, CRUZ-ESCALONA V H, PETERSON M S, et al. Ecological niche modelling of endemic fish within La Paz Bay: implications for conservation[J]. J Nat Conserv, 2021, 60: 125981. doi: 10.1016/j.jnc.2021.125981
    [36]
    张雨桐. 海洋变暖对鱼类的影响研究进展[J]. 生物化工, 2023, 9(3): 217-222.
    [37]
    刘星雨. 气候变化对中国近海主要经济鱼类潜在适宜生境影响的研究[D]. 舟山: 浙江海洋大学, 2023: 64.
    [38]
    HASTINGS R A, RUTTERFORD L A, FREER J J, et al. Climate change drives poleward increases and equatorward declines in marine species[J]. Curr Biol, 2020, 30(8): 1572-1577. doi: 10.1016/j.cub.2020.02.043
    [39]
    李元超, 吴钟解, 梁计林, 等. 近 15 年西沙群岛长棘海星暴发周期及暴发原因分析[J]. 科学通报, 2019, 64(33): 3478-3484.
    [40]
    KEESING J K, HALFORD A R. Importance of postsettlement processes for the population dynamics of Acanthaster planci (L.)[J]. Mar Freshw Res, 1992, 43(3): 635-651. doi: 10.1071/MF9920635
    [41]
    HALL M R, KOCOT K M, BAUGHMAN K W, et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest[J]. Nature, 2017, 544(7649): 231-234. doi: 10.1038/nature22033
    [42]
    UTHICKE S, LOGAN M, LIDDY M, et al. Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks[J]. Sci Rep, 2015, 5(1): 8402. doi: 10.1038/srep08402
    [43]
    SORTE C J B, WILLIAMS S L, CARLTON J T. Marine range shifts and species introductions: comparative spread rates and community impacts[J]. Glob Ecol Biogeogr, 2010, 19(3): 303-316. doi: 10.1111/j.1466-8238.2009.00519.x
    [44]
    DULVY N K, FRECKLETON R P, POLUNIN N V C. Coral reef cascades and the indirect effects of predator removal by exploitation[J]. Ecol Lett, 2004, 7(5): 410-416. doi: 10.1111/j.1461-0248.2004.00593.x
    [45]
    HOEGH-GULDBERG O, KENNEDY E V, BEYER H L, et al. Securing a long-term future for coral reefs[J]. Trends Ecol Evol, 2018, 33(12): 936-944. doi: 10.1016/j.tree.2018.09.006
    [46]
    FABRICIUS K E, OKAJI K, DE'ATH G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation[J]. Coral Reefs, 2010, 29: 593-605. doi: 10.1007/s00338-010-0628-z
  • Related Articles

    [1]ZHONG Zhanyou, DENG Hong, KOU Chunni, CHEN Weitao, WU Zhi, LI Yuefei, XIA Yuguo, LI Huifeng, LI Jie, ZHU Shuli. Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology[J]. South China Fisheries Science, 2025, 21(2): 47-58. DOI: 10.12131/20240173
    [2]CHEN Weitao, DUAN Xinbin, GAO Lei, LI Xinhui, YANG Jiping, WANG Dengqiang. Genetic structure analysis of Ochetobius elongatus between Yangtze River and Pearl River using multiple loci[J]. South China Fisheries Science, 2022, 18(6): 19-25. DOI: 10.12131/20220007
    [3]WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019
    [4]XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131
    [5]ZHU Shuli, LI Yuefei, WU Zhi, LI Jie, XIA Yuguo, YANG Jiping, LI Xinhui. Research on catchable size and resource protection of Squaliobarbus curriculus in Xijiang River Fengkai section based on length-frequency data[J]. South China Fisheries Science, 2020, 16(4): 1-7. DOI: 10.12131/20190231
    [6]ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042
    [7]KUANG Tianxu, SHUAI Fangmin, CHEN Weitao, LI Xinhui. Genetic diversity and population structure of Carassius auratus in Xijiang River[J]. South China Fisheries Science, 2018, 14(5): 29-35. DOI: 10.3969/j.issn.2095-0780.2018.05.004
    [8]YANG Xishu, ZHANG Qun, YÜ Fanyang, LV Jinlei, DI Xiaodan, SHAO Junwei, HUANG Zhenyu, LU Lifeng. MtDNA ND2 sequence-based genetic analysis of Anabas testudineus from South China and Lancang/Mekong River[J]. South China Fisheries Science, 2017, 13(3): 43-50. DOI: 10.3969/j.issn.2095-0780.2017.03.006
    [9]WU Zhi, TAN Xichang, LI Xinhui, TANG Yong. Acoustic monitoring on fish resources in Xijiang section of Pearl River during first closed fishing season[J]. South China Fisheries Science, 2014, 10(3): 24-28. DOI: 10.3969/j.issn.2095-0780.2014.03.004
    [10]ZHU Shuli, LI Xinhui, LI Yuefei, WANG Chao, YANG Jiping, LI Lin. Age and growth of Spualiobarbus curriculus from Zhaoqing Guangdong Section of Xijiang River[J]. South China Fisheries Science, 2013, 9(2): 27-31. DOI: 10.3969/j.issn.2095-0780.2013.02.005
  • Cited by

    Periodical cited type(9)

    1. 邓洪,钟占友,寇春妮,朱书礼,李跃飞,夏雨果,武智,李捷,陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史. 生物多样性. 2025(01): 97-106 .
    2. 詹华伟,叶树政,陈锭娴,王凯丰,刘兰苑,龚剑,韩崇,李强. 基于线粒体Cytb序列的广东地区大刺鳅群体遗传多样性分析. 湖南农业科学. 2024(03): 1-6 .
    3. 刘童,王英俊,吴莹莹,邹琰,吕芳,吴海一,李建民,宋爱环. 魁蚶3个群体及杂交子代遗传多样性分析. 水产科学. 2024(04): 561-570 .
    4. 邓树庆,蔡杏伟,王韩,符成慧,张清凤,申志新,李高俊,李芳远. 保亭近腹吸鳅遗传多样性及保护建议. 热带生物学报. 2024(04): 419-426 .
    5. 王吉祥,刘凯,王永杰,刘彦斌,刘嘉成,王彩雯,肖伟,连总强,王玉涛. 黄河宁夏段黄河鮈群体的遗传多样性与系统发育分析. 基因组学与应用生物学. 2024(07): 1248-1259 .
    6. 卞玉玲,刘士力,刘一诺,贾永义,李飞,迟美丽,郑建波,程顺,顾志敏. 湖州河川沙塘鳢群体线粒体DNA cyt b基因序列的遗传多样性分析. 水产学杂志. 2023(01): 22-28+35 .
    7. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体nad1基因的大理州亚洲带绦虫遗传多样性分析. 热带医学杂志. 2023(03): 301-304 .
    8. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体12S rRNA基因对大理州亚洲带绦虫遗传多样性的分析. 中国人兽共患病学报. 2023(08): 784-788 .
    9. 范嗣刚,黄皓,王鹏飞,闫路路,赵超,张博,邱丽华. 基于cox1序列的中国6个花鲈野生群体遗传多样性. 广东海洋大学学报. 2022(03): 11-17 .

    Other cited types(6)

Catalog

    Article views (204) PDF downloads (98) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return