FEI Jiaojiao, LI Cheng, ZHANG Jian, TENG Yuxiu, WU Yuntao, SHI Jiangao. Effects of seamount characteristics in Central and Western Pacific Ocean on CPUEs of yellowfin tuna (Thunnus albacares) in longline and purse seine fisheries[J]. South China Fisheries Science, 2024, 20(2): 1-10. DOI: 10.12131/20230200
Citation: FEI Jiaojiao, LI Cheng, ZHANG Jian, TENG Yuxiu, WU Yuntao, SHI Jiangao. Effects of seamount characteristics in Central and Western Pacific Ocean on CPUEs of yellowfin tuna (Thunnus albacares) in longline and purse seine fisheries[J]. South China Fisheries Science, 2024, 20(2): 1-10. DOI: 10.12131/20230200

Effects of seamount characteristics in Central and Western Pacific Ocean on CPUEs of yellowfin tuna (Thunnus albacares) in longline and purse seine fisheries

More Information
  • Received Date: October 19, 2023
  • Revised Date: November 26, 2023
  • Accepted Date: December 14, 2023
  • Available Online: December 21, 2023
  • Seamounts are one of the important habitat types on the seafloor and a hotspot for marine biodiversity. Yellowfin tuna (Thunnus albacares) is widely distributed in the Western and Central Pacific Ocean (WCPO) with high ecological and economic value. However, there are few studies on the mechanisms by which seamounts and their associated features affect the abundance and distribution of yellowfin tuna resources. In this study, we used longline and purse seine fishery data summarized by the Western and Central Pacific Fisheries Commission (WCPFC) from 2010–2021, in addition with seamount characteristics data, to analyze the impacts of two different types of seamounts on the abundance and distribution of yellowfin tuna resources using a generalized additive model (GAM). GAM was utilized to examine the connection between catch per unit effort (CPUE) and seamounts characteristics of yellowfin tuna in two different fishing methods. The results show that in the WCPO, the yellowfin tuna catches in the two fisheries mainly originated from seamount areas, and seamount characteristics had a highly significant effect on CPUEs of yellowfin tuna in both fisheries (P<0.001). In the longline fishery, higher CPUE occurred in seamount areas with less peak depth, roughness, base area, and seamount density as well as gentler slopes, whereas higher CPUE occurred in the purse seine fishery in seamount areas with less roughness, greater peak depth, greater base area, as well as steeper and denser slopes. In summary, we explore the mechanism of the influence of WCPO seamount characteristics on different populations of yellowfin tuna, which provides new ideas and references for further exploring the relationship between the distribution of yellowfin tuna populations and changes in resource abundance with the marine environment in the future.

  • [1]
    YESSON C, LETESSIER T, NIMMO-SMITH A, et al. Improved bathymetry leads to > 4000 new seamount predictions in the global ocean–but beware of phantom seamounts[J]. UCL Press, 2021, 4: 1-9.
    [2]
    YESSON C, CLARK M R, TAYLOR M L, et al. The global distribution of seamounts based on 30 arc seconds bathymetry data[J]. Deep-Sea Res I, 2011, 58(4): 442-453. doi: 10.1016/j.dsr.2011.02.004
    [3]
    ROGERS A D. The biology of seamounts: 25 years on[J]. Adv Mar Biol, 2018, 79: 137-224.
    [4]
    BO M, COPPARI M, BETTI F, et al. Unveiling the deep biodiversity of the Janua Seamount (Ligurian Sea): first Mediterranean sighting of the rare Atlantic bamboo coral Chelidonisis aurantiaca Studer, 1890[J]. Deep-Sea Res I, 2020, 156: 103186. doi: 10.1016/j.dsr.2019.103186
    [5]
    PITCHER T J, MORATO T, HART P J B, et al. Seamounts: ecology, fisheries & conservation[M]. Oxford: Blackwell Pub, 2007: 85-100, 442-475.
    [6]
    GONZLEZ-IRUSTA J M, DE LA TORRIENTE A, PUNZN A, et al. Living at the top. Connectivity limitations and summit depth drive fish diversity patterns in an isolated seamount[J]. Mar Ecol Prog Ser, 2021, 670: 121-137. doi: 10.3354/meps13766
    [7]
    BRIDGES A E H, BARNES D K A, BELL J B, et al. Depth and latitudinal gradients of diversity in seamount benthic communities[J]. J Biogeogr, 2022, 49(5): 904-915. doi: 10.1111/jbi.14355
    [8]
    MCCLAIN C R, LUNDSTEN L. Assemblage structure is related to slope and depth on a deep offshore Pacific seamount chain[J]. Mar Ecol, 2015, 36(2): 210-220. doi: 10.1111/maec.12136
    [9]
    HANN C H, SMITH T D, AND TORRES L G. A sperm whale's perspective: the importance of seasonality and seamount depth[J]. Mar Mammal Sci, 2016, 32(4): 1470-1481. doi: 10.1111/mms.12320
    [10]
    ROWDEN A A, SCHLACHER T A, WILLIAMS A, et al. A test of the seamount oasis hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes[J]. Mar Ecol, 2010, 31(1): 95-106.
    [11]
    CAMPANELLA F, COLLINS M A, YOUNG E F, et al. First insight of meso-and bentho-pelagic fish dynamics around remote seamounts in the South Atlantic Ocean[J]. Front Mar Sci, 2021, 8: 693.
    [12]
    VASSALLO P, PAOLI C, ALESSI J, et al. Seamounts as hot-spots of large pelagic aggregations[J]. Mediterr Mar Sci, 2018, 19(3): 444-458. doi: 10.12681/mms.15546
    [13]
    KVILE K , TARANTO G H, PITCHER T J, et al. A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework[J]. Biol Conserv, 2014, 173: 108-120. doi: 10.1016/j.biocon.2013.10.002
    [14]
    DEARY A L, MORET-FERGUSON S, ENGELS M, et al. Influence of central pacific oceanographic conditions on the potential vertical habitat of four tropical tuna species1[J]. Pac Sci, 2015, 69(4): 461-475. doi: 10.2984/69.4.3
    [15]
    DUFFY L M, KUHNERT P M, PETHYBRIDGE H R, et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales[J]. Deep-Sea Res II, 2017, 140: 55-73. doi: 10.1016/j.dsr2.2017.03.003
    [16]
    DORTEL E, PECQUERIE L, CHASSOT E. A Dynamic Energy Budget simulation approach to investigate the eco-physiological factors behind the two-stanza growth of yellowfin tuna (Thunnus albacares)[J]. Ecol Model, 2020, 437: 109297. doi: 10.1016/j.ecolmodel.2020.109297
    [17]
    PECORARO C, ZUDAIRE I, BODIN N, et al. Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares)[J]. Rev Fish Biol Fish, 2016, 27(4): 811-841.
    [18]
    石肖飞, 王啸, 王佚兮, 等. 热带中西太平洋海域黄鳍金枪鱼的摄食生物学特性[J]. 南方水产科学, 2022, 18(1): 43-51. doi: 10.12131/20210140
    [19]
    SCHAEFER K M, FULLER D W, AND BLOCK B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering[J]. Fish Res, 2011, 112(1/2): 22-37.
    [20]
    WRIGHT S R, RIGHTON D, NAULAERTS J, et al. Yellowfin tuna behavioural ecology and catchability in the South Atlantic: the right place at the right time (and depth)[J]. Front Mar Sci, 2021, 8: 664593. doi: 10.3389/fmars.2021.664593
    [21]
    DAGORN L, HOLLAND K N, HALLIER J P, et al. Deep diving behavior observed in yellowfin tuna (Thunnus albacares)[J]. Aquat Living Resour, 2006, 19(1): 85-88. doi: 10.1051/alr:2006008
    [22]
    CLARK M R, ROWDEN A A, SCHLACHER T, et al. The ecology of seamounts: structure, function, and human impacts[J]. Annu Rev Mar Sci, 2010, 2: 253-278. doi: 10.1146/annurev-marine-120308-081109
    [23]
    PILLING G, SCOTT F, AND HAMPTON S. Minimum target reference points for WCPO yellowfin and bigeye tuna consistent with alternative LRP risk levels, and multispecies implications[R/OL]. [2030-09-10] Pohnpei: Technical Report WCPFC-SC15-2019/MI-WP-01, 2019. https://www.wcpfc.int/doc/wcpfc16-2019-15-update-sc15-mi-wp-01/minimum-target-reference-points-wcpo-yellowfin-and-bigeye.pdf
    [24]
    ZHAO R J, ZHAO F, FENG L, et al. A deep seamount effect enhanced the vertical connectivity of the planktonic community across 1,000 m above summit[J]. J Geophys Res-Oceans, 2023, 128(3): e2022JC018898. doi: 10.1029/2022JC018898
    [25]
    MORATO T, HOYLE S D, ALLAIN V, et al. Seamounts are hotspots of pelagic biodiversity in the open ocean[J]. P Natl Acad Sci USA, 2010, 107(21): 9707-9711. doi: 10.1073/pnas.0910290107
    [26]
    MORATO T, VARKEY D A, DAMASO C, et al. Evidence of a seamount effect on aggregating visitors[J]. Mar Ecol Prog Ser, 2008, 357(4): 23-32.
    [27]
    MAUNDER M N, STARR P J. Fitting fisheries models to standardised CPUE abundance indices[J]. Fish Res, 2003, 63(1): 43-50. doi: 10.1016/S0165-7836(03)00002-X
    [28]
    PEDERSEN E J, MILLER D L, SIMPSON G L, et al. Hierarchical generalized additive models in ecology: an introduction with mgcv[J]. PeerJ, 2019, 7: e6876. doi: 10.7717/peerj.6876
    [29]
    MARN-ENRQUEZ E, RAMREZ-PREZ J S, RUIZ-DOMNGUEZ M, et al. Effect of marine climate and baitfish availability on the tuna baitboat fishery CPUE off northwestern Mexico[J]. Ocean Coast Manag, 2023, 232: 106418. doi: 10.1016/j.ocecoaman.2022.106418
    [30]
    VAIHOLA S, KININMONTH S. Climate change potential impacts on the tuna fisheries in the exclusive economic zones of Tonga[J]. Diversity, 2023, 15(7): 844. doi: 10.3390/d15070844
    [31]
    LEHODEY P, BERTRAND A, HOBDAY A J, et al. ENSO impact on marine fisheries and ecosystems[M]. Washington: Wiley-American Geophysical Union, 2020: 429-451.
    [32]
    BO M, COPPARI M, BETTI F, et al. The high biodiversity and vulnerability of two Mediterranean bathyal seamounts support the need for creating offshore protected areas[J]. Aquat Conserv, 2021, 31(3): 543-566. doi: 10.1002/aqc.3456
    [33]
    HANAFI-PORTIER M, SAMADI S, CORBARI L, et al. Multiscale spatial patterns and environmental drivers of seamount and island slope megafaunal assemblages along the Mozambique channel[J]. Deep-Sea Res I, 2024, 203: 104198. doi: 10.1016/j.dsr.2023.104198
    [34]
    PITCHER T J, MORATO T, HART P J B, et al. Seamounts: ecology, fisheries & conservation[M]. Oxford: Blackwell Pub, 2007: 238-239.
    [35]
    CLARK M R. Deep sea seamount fisheries: a review of global status and future prospects[J]. Lat Am J Aquat Res, 2009, 37(3): 501-512. doi: 10.3856/vol37-issue3-fulltex-16
    [36]
    ITANO D. A summary of operational, technical and fishery information on WCPO purse seine fisheries operating on floating objects[R/OL]. [2023-09-10]Honolulu: Scientific Committee 3rd Regular Session of Western and Central Pacific Fisheries Commission, 2007. https://www.wcpfc.int/system/files/SC3_FT-IP-4_Itano%20FO_complete.pdf
    [37]
    PITCHER T J, MORATO T, HART P J B, et al. seamounts: ecology, fisheries & conservation[M]. Oxford: Blackwell Pub, 2007: 85-100.
    [38]
    PRECIADO I, CARTES J E, PUNZN A, et al. Food web functioning of the benthopelagic community in a deep-sea seamount based on diet and stable isotope analyses[J]. Deep-Sea Res I, 2017, 137: 56-68.
    [39]
    BRILL R W, LUTCAVAGE M E. Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments[C]//American Fisheries Society Symposium. Phoenix: American Fisheries Society, 2001: 179-198.
    [40]
    AUSCAVITCH S R, DEERE M C, KELLER A G, et al. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the phoenix islands protected area[J]. Front Mar Sci, 2020, 7: 42. doi: 10.3389/fmars.2020.00042
    [41]
    CLARK M R, BOWDEN D A. Seamount biodiversity: high variability both within and between seamounts in the Ross Sea region of Antarctica[J]. Hydrobiologia, 2015, 761(1): 161-180. doi: 10.1007/s10750-015-2327-9
    [42]
    VASSALLO P, PAOLI C, ALIANI S, et al. Benthic diversity patterns and predictors: a study case with inferences for conservation[J]. Mar Pollut Bull, 2020, 150: 110748. doi: 10.1016/j.marpolbul.2019.110748
    [43]
    LAN K W, SHIMADA T, LEE M A, et al. Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical Pacific Ocean[J]. Remote Sens-Basel, 2017, 9(5): 444. doi: 10.3390/rs9050444
    [44]
    杨胜龙, 张忭忭, 靳少非, 等. 中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系[J]. 海洋学报, 2015, 37(6): 78-87. doi: http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC201506008.htm
    [45]
    HOOLIHAN J, WELLS R, LUO J, et al. Vertical and horizontal movements of yellowfin tuna in the Gulf of Mexico[J]. Mar Coast Fish, 2014, 6(1): 211-222. doi: 10.1080/19425120.2014.935900
    [46]
    LASCELLES B, NOTARBARTOLO DI SCIARA G, AGARDY T, et al. Migratory marine species: their status, threats and conservation management needs[J]. Aquat Conserv, 2014, 24(S2): 111-127. doi: 10.1002/aqc.2512
    [47]
    DUERI S, MAURY O. Modelling the effect of marine protected areas on the population of skipjack tuna in the Indian Ocean[J]. Aquat Living Resour, 2013, 26(2): 171-178.
    [48]
    GRSS A. Modelling the impacts of marine protected areas for mobile exploited fish populations and their fisheries: what we recently learnt and where we should be going[J]. Aquat Living Resour, 2015, 27(3/4): 107-133.
    [49]
    CLARK M R, WATLING L, ROWDEN A A, et al. A global seamount classification to aid the scientific design of marine protected area networks[J]. Ocean Coast Manag, 2011, 54(1): 19-36. doi: 10.1016/j.ocecoaman.2010.10.006
    [50]
    HOWELL K L. A benthic classification system to aid in the implementation of marine protected area networks in the deep/high seas of the NE Atlantic[J]. Biol Conserv, 2010, 143(5): 1041-1056.
    [51]
    FREIWALD A. Cold-water corals and ecosystems[M]. Heidelberg: Springer Science & Business Media, 2005: 259-276.
    [52]
    RAMOS A, SANTIAGO J, SANGRA P, et al. An application of satellite-derived sea surface temperature data to the skipjack (Katsuwonus pelamis Linnaeus, 1758) and albacore tuna (Thunnus alalunga Bonaterre, 1788) fisheries in the north-east Atlantic[J]. Int J Remote Sens, 1996, 17(4): 749-759. doi: 10.1080/01431169608949042
    [53]
    FIEDLER P C, BERNARD H J. Tuna aggregation and feeding near fronts observed in satellite imagery[J]. Cont Shelf Res, 1987, 7(8): 871-881. doi: 10.1016/0278-4343(87)90003-3
    [54]
    CLARK M R, SCHLACHER T A, ROWDEN A A, et al. Science priorities for seamounts: research links to conservation and management[J]. PLoS One, 2012, 7(1): e29232. doi: 10.1371/journal.pone.0029232
    [55]
    BARCKHAUSEN U, ROESER H A, von HUENE R. Magnetic signature of upper plate structures and subducting seamounts at the convergent margin off Costa Rica[J]. J Geophys Res-Sol Ea, 1998, 103(B4): 7079-7093. doi: 10.1029/98JB00163
    [56]
    WRIGHT S R, RIGHTON D, NAULAERTS J, et al. Fidelity of yellowfin tuna to seamount and island foraging grounds in the central South Atlantic Ocean[J]. Deep-Sea Res I, 2021, 172: 103513. doi: 10.1016/j.dsr.2021.103513
    [57]
    LAM C H, TAM C, KOBAYASHI D R, et al. Complex dispersal of adult yellowfin tuna from the main Hawaiian islands[J]. Front Mar Sci, 2020, 7: 138. doi: 10.3389/fmars.2020.00138
    [58]
    MONDAL S, RAY A, LEE M A, et al. Projected changes in spawning ground distribution of mature albacore tuna in the Indian Ocean under various global climate change scenarios[J]. J Mar Sci Eng, 2023, 11(8): 1565. doi: 10.3390/jmse11081565

Catalog

    Article views (215) PDF downloads (61) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return