LYU Junlin, CHEN Zuozhi, LI Bilong, CAI Runji, GAO Yuefang. Research on fish recognition based on multi-stage feature extraction learning[J]. South China Fisheries Science, 2024, 20(1): 99-109. DOI: 10.12131/20230197
Citation: LYU Junlin, CHEN Zuozhi, LI Bilong, CAI Runji, GAO Yuefang. Research on fish recognition based on multi-stage feature extraction learning[J]. South China Fisheries Science, 2024, 20(1): 99-109. DOI: 10.12131/20230197

Research on fish recognition based on multi-stage feature extraction learning

More Information
  • Received Date: October 15, 2023
  • Revised Date: December 12, 2023
  • Accepted Date: December 15, 2023
  • Available Online: December 20, 2023
  • Automatic fish recognition is widely used in the fields of marine ecology and aquaculture. Due to factors such as fluctuating illumination, overlapping instances and occlusion, accurate automatic identification of fish is extremely challenging. In order to solve these problems, this paper introduces an innovative Multi-stage Feature Extraction Network (MF-Net) model, which is predicated upon a multi-stage feature extraction paradigm for the domain of automatic fish recognition. The architecture of MF-Net commences with a subtle image enhancement preprocessing step, judiciously designed to augment the computational efficiency of the model. Then the deployment of a multi-stage convolutional feature extraction strategy is applied to improve the model's sensitivity towards the granular features of fish species. In an effort to mitigate issues arising from data imbalance, the model incorporates a long-tail loss computation strategy. To evaluate the efficacy of the proposed MF-Net, the study collects a comprehensive fish dataset encompassing 500 categories including 32 768 images. The proposed MF-Net demonstrated a remarkable accuracy of 86.8% on this dataset, thereby outperforming the recognition performance of the existing state-of-the-art target recognition algorithms. Furthermore, the model is tested on a publicly butterfly dataset to verify its generalization performance, and multiple ablation experiments further validate the effectiveness of the proposed algorithm.

  • [1]
    PRIMO A L. Ecology of marine fish larvae[M]//WALTER L F, ANABELA M A, LUCIANA B, et al. Encyclopedia of the UN sustainable development goals, life below water. New York: Springer Nature, 2021: 1-10.
    [2]
    LI D L, WANG Z H, WU S Y, et al. Automatic recognition methods of fish feeding behavior in aquaculture: a review[J]. Aquaculture, 2020, 528: 735508. doi: 10.1016/j.aquaculture.2020.735508
    [3]
    麦广铭, 陈志劼, 王学锋, 等. 南海北部沿岸鱼类分类学多样性的空间格局[J]. 南方水产科学, 2022, 18(3): 38-47. doi: 10.12131/20210117
    [4]
    CHEN W H, LIU J Y, ZHANG Y P, et al. Current status and accics of research on smart fishery in China: a literature review based on CNKI (2000−2022)[J]. Int J Environ Sustain Protect, 2023, 2(4): 24-32.
    [5]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
    [6]
    LIU Z, LI Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021: n9992-10002. DOI: 10.1109/ICCV48922.2021.00986.
    [7]
    ZHUANG P Q, WANG Y L, QIAO Y. Wildfish++: a comprehensive fish benchmark for multimedia research[J]. IEEE T Multimedia, 2021, 23: 3603-3617. doi: 10.1109/TMM.2020.3028482
    [8]
    LIU Z H, JIA X J, XU X S. Study of shrimp recognition methods using smart networks[J]. Comput Electron Agric, 2019, 165: 104926. doi: 10.1016/j.compag.2019.104926
    [9]
    汪小旵, 武尧, 肖茂华, 等. 水产养殖中智能识别技术的研究进展[J]. 华南农业大学学报, 2023, 44(1): 24-33. doi: 10.7671/j.issn.1001-411X.202204013
    [10]
    YANG X T, ZHANG S, LIU J T, et al. Deep learning for smart fish farming: applications, opportunities and challenges[J]. Rev Aquac, 2021, 13(1): 66-90. doi: 10.1111/raq.12464
    [11]
    RUM S N M, NAWAWI F A Z. FishDeTec: a fish identification application using image recognition approach[J]. Int J Adv Comp Sci Appl, 2021, 12. DOI: 10.14569/IJACSA.2021.0120312.
    [12]
    李均鹏, 祝开艳, 杨澍. 基于迁移学习的复杂场景海洋鱼类识别方法[J]. 计算机应用与软件, 2019, 36(9): 168-174. doi: 10.3969/j.issn.1000-386x.2019.09.030
    [13]
    姚润璐, 桂詠雯, 黄秋桂. 基于机器视觉的淡水鱼品种识别[J]. 微型机与应用, 2017, 36(24): 37-39.
    [14]
    CHRISTENSEN J H, MOGENSEN L V, GALEAZZI R, et al. Detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks[C]. 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 2018: 1-6. DOI: 10.1109/AUV.2018.8729798.
    [15]
    PRAMUNENDAR R A, WIBIRAMA S, SANTOSA P I. Fish classification based on underwater image interpolation and back-propagation neural network[C] 2019 5th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 2019: 1-6.
    [16]
    POUYANFAR S, TAO Y D, MOHAN A, et al. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]//2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Miami, FL, USA, 2018: 112-117. DOI: 10.1109/MIPR.2018.00027.
    [17]
    KANG B Y, XIE S N, ROHRBACH M, et al. Decoupling representation and classifier for long-tailed recognition[J]. arXiv, 2020: 1910.09217v2. DOI: 10.48550/arXiv.1910.09217.
    [18]
    ZHANG S Y, LI Z M, YAN S P, et al. Distribution alignment: a unified framework for long-tail visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 2361-2370. DOI: 10.1109/CVPR46437.2021.00239.
    [19]
    CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 9268-9277. [2023-11-10]. https://openaccess.thecvf.com/content_CVPR_2019/papers/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.pdf.
    [20]
    ZHOU B Y, CUI Q, WEI X S, et al. BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 9716-9725. DOI: 10.1109/CVPR42600.2020.00974.
    [21]
    WANG W Q, ZHAO Z C, WANG P Y, et al. Attentive feature augmentation for long-tailed visual recognition[J]. IEEE T Circ Syst Vid Technol, 2022, 32(9): 5803-5816. doi: 10.1109/TCSVT.2022.3161427
    [22]
    PANG S M, WANG W Y, ZHANG R Z, et al. Hierarchical block aggregation network for long-tailed visual recognition[J]. Neurocomputing, 2023, 549: 126463. doi: 10.1016/j.neucom.2023.126463
    [23]
    HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 1577-1586. DOI: 10.1109/CVPR42600.2020.00165.
    [24]
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 2818-2826. DOI: 10.1109/CVPR.2016.308.
    [25]
    PAN F Y, LI S K, AO X, et al. Warm up cold-start advertisements: improving ctr predictions via learning to learn ID embeddings[C]//SIGIR'19: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, July 2019: 695-704. DOI: 10.1145/3331184.3331268.
    [26]
    LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[J/OL]. arXiv, 2017: 1608.03983v5. https://arxiv.org/pdf/1608.03983.pdf.
    [27]
    WOO S, DEBNATH S, HU R H, et al. Convnext v2: Co-designing and scaling convnets with masked autoencoders[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: n16133-16142. DOI: 10.1109/CVPR52729.2023.01548.
    [28]
    XU C D, CAI R J, XIE Y H, et al. Fine-grained butterfly recognition via peer learning network with distribution-aware penalty mechanism[J]. Animals, 2022, 12(20): 2884. doi: 10.3390/ani12202884

Catalog

    Article views (371) PDF downloads (64) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return