Citation: | LYU Junlin, CHEN Zuozhi, LI Bilong, CAI Runji, GAO Yuefang. Research on fish recognition based on multi-stage feature extraction learning[J]. South China Fisheries Science, 2024, 20(1): 99-109. DOI: 10.12131/20230197 |
Automatic fish recognition is widely used in the fields of marine ecology and aquaculture. Due to factors such as fluctuating illumination, overlapping instances and occlusion, accurate automatic identification of fish is extremely challenging. In order to solve these problems, this paper introduces an innovative Multi-stage Feature Extraction Network (MF-Net) model, which is predicated upon a multi-stage feature extraction paradigm for the domain of automatic fish recognition. The architecture of MF-Net commences with a subtle image enhancement preprocessing step, judiciously designed to augment the computational efficiency of the model. Then the deployment of a multi-stage convolutional feature extraction strategy is applied to improve the model's sensitivity towards the granular features of fish species. In an effort to mitigate issues arising from data imbalance, the model incorporates a long-tail loss computation strategy. To evaluate the efficacy of the proposed MF-Net, the study collects a comprehensive fish dataset encompassing 500 categories including 32 768 images. The proposed MF-Net demonstrated a remarkable accuracy of 86.8% on this dataset, thereby outperforming the recognition performance of the existing state-of-the-art target recognition algorithms. Furthermore, the model is tested on a publicly butterfly dataset to verify its generalization performance, and multiple ablation experiments further validate the effectiveness of the proposed algorithm.
[1] |
PRIMO A L. Ecology of marine fish larvae[M]//WALTER L F, ANABELA M A, LUCIANA B, et al. Encyclopedia of the UN sustainable development goals, life below water. New York: Springer Nature, 2021: 1-10.
|
[2] |
LI D L, WANG Z H, WU S Y, et al. Automatic recognition methods of fish feeding behavior in aquaculture: a review[J]. Aquaculture, 2020, 528: 735508. doi: 10.1016/j.aquaculture.2020.735508
|
[3] |
麦广铭, 陈志劼, 王学锋, 等. 南海北部沿岸鱼类分类学多样性的空间格局[J]. 南方水产科学, 2022, 18(3): 38-47. doi: 10.12131/20210117
|
[4] |
CHEN W H, LIU J Y, ZHANG Y P, et al. Current status and accics of research on smart fishery in China: a literature review based on CNKI (2000−2022)[J]. Int J Environ Sustain Protect, 2023, 2(4): 24-32.
|
[5] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
|
[6] |
LIU Z, LI Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021: n9992-10002. DOI: 10.1109/ICCV48922.2021.00986.
|
[7] |
ZHUANG P Q, WANG Y L, QIAO Y. Wildfish++: a comprehensive fish benchmark for multimedia research[J]. IEEE T Multimedia, 2021, 23: 3603-3617. doi: 10.1109/TMM.2020.3028482
|
[8] |
LIU Z H, JIA X J, XU X S. Study of shrimp recognition methods using smart networks[J]. Comput Electron Agric, 2019, 165: 104926. doi: 10.1016/j.compag.2019.104926
|
[9] |
汪小旵, 武尧, 肖茂华, 等. 水产养殖中智能识别技术的研究进展[J]. 华南农业大学学报, 2023, 44(1): 24-33. doi: 10.7671/j.issn.1001-411X.202204013
|
[10] |
YANG X T, ZHANG S, LIU J T, et al. Deep learning for smart fish farming: applications, opportunities and challenges[J]. Rev Aquac, 2021, 13(1): 66-90. doi: 10.1111/raq.12464
|
[11] |
RUM S N M, NAWAWI F A Z. FishDeTec: a fish identification application using image recognition approach[J]. Int J Adv Comp Sci Appl, 2021, 12. DOI: 10.14569/IJACSA.2021.0120312.
|
[12] |
李均鹏, 祝开艳, 杨澍. 基于迁移学习的复杂场景海洋鱼类识别方法[J]. 计算机应用与软件, 2019, 36(9): 168-174. doi: 10.3969/j.issn.1000-386x.2019.09.030
|
[13] |
姚润璐, 桂詠雯, 黄秋桂. 基于机器视觉的淡水鱼品种识别[J]. 微型机与应用, 2017, 36(24): 37-39.
|
[14] |
CHRISTENSEN J H, MOGENSEN L V, GALEAZZI R, et al. Detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks[C]. 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 2018: 1-6. DOI: 10.1109/AUV.2018.8729798.
|
[15] |
PRAMUNENDAR R A, WIBIRAMA S, SANTOSA P I. Fish classification based on underwater image interpolation and back-propagation neural network[C] 2019 5th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 2019: 1-6.
|
[16] |
POUYANFAR S, TAO Y D, MOHAN A, et al. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]//2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Miami, FL, USA, 2018: 112-117. DOI: 10.1109/MIPR.2018.00027.
|
[17] |
KANG B Y, XIE S N, ROHRBACH M, et al. Decoupling representation and classifier for long-tailed recognition[J]. arXiv, 2020: 1910.09217v2. DOI: 10.48550/arXiv.1910.09217.
|
[18] |
ZHANG S Y, LI Z M, YAN S P, et al. Distribution alignment: a unified framework for long-tail visual recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 2361-2370. DOI: 10.1109/CVPR46437.2021.00239.
|
[19] |
CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 9268-9277. [2023-11-10]. https://openaccess.thecvf.com/content_CVPR_2019/papers/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.pdf.
|
[20] |
ZHOU B Y, CUI Q, WEI X S, et al. BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 9716-9725. DOI: 10.1109/CVPR42600.2020.00974.
|
[21] |
WANG W Q, ZHAO Z C, WANG P Y, et al. Attentive feature augmentation for long-tailed visual recognition[J]. IEEE T Circ Syst Vid Technol, 2022, 32(9): 5803-5816. doi: 10.1109/TCSVT.2022.3161427
|
[22] |
PANG S M, WANG W Y, ZHANG R Z, et al. Hierarchical block aggregation network for long-tailed visual recognition[J]. Neurocomputing, 2023, 549: 126463. doi: 10.1016/j.neucom.2023.126463
|
[23] |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 1577-1586. DOI: 10.1109/CVPR42600.2020.00165.
|
[24] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 2818-2826. DOI: 10.1109/CVPR.2016.308.
|
[25] |
PAN F Y, LI S K, AO X, et al. Warm up cold-start advertisements: improving ctr predictions via learning to learn ID embeddings[C]//SIGIR'19: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, July 2019: 695-704. DOI: 10.1145/3331184.3331268.
|
[26] |
LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[J/OL]. arXiv, 2017: 1608.03983v5. https://arxiv.org/pdf/1608.03983.pdf.
|
[27] |
WOO S, DEBNATH S, HU R H, et al. Convnext v2: Co-designing and scaling convnets with masked autoencoders[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: n16133-16142. DOI: 10.1109/CVPR52729.2023.01548.
|
[28] |
XU C D, CAI R J, XIE Y H, et al. Fine-grained butterfly recognition via peer learning network with distribution-aware penalty mechanism[J]. Animals, 2022, 12(20): 2884. doi: 10.3390/ani12202884
|
1. |
冯元泰,史荣君,李俊伟,区又君,齐占会,黄洪辉,贾旭颖. 不同日龄四指马鲅幼鱼肠道结构和菌群组成变化分析. 南方水产科学. 2025(01): 153-163 .
![]() | |
2. |
吴子宜,赖文杰,邹振江,宋亚康,黄舜梅,汤胜亮,卢丹琪,张勇. 四指马鲅热休克蛋白70基因(HSP70)表达分析. 海南热带海洋学院学报. 2024(02): 1-10+37 .
![]() | |
3. |
段国庆,周华兴,汪焕,凌俊,胡玉婷,潘庭双,杨敏,邬凌云,江河. 60日龄瓦氏黄颡鱼选育群体形态性状对体重的影响分析. 安徽农业大学学报. 2023(01): 78-85 .
![]() | |
4. |
江梁正,王珺,区又君,周文礼,温久福,朱长波,李俊伟,陈朝. 2种盐度池塘养殖四指马鲅的肌肉营养组成分析. 中国渔业质量与标准. 2023(02): 11-17 .
![]() | |
5. |
田田. 人工养殖斑鳜(Siniperca scherzeri)形态性状与体质量的相关性研究. 水产学杂志. 2023(03): 68-74 .
![]() | |
6. |
陈爱华,董义超,吕曼,李泉城,李蒙,石英,刘明. 墨瑞鳕幼鱼形态性状对体质量通径分析及生长曲线拟合. 淡水渔业. 2023(05): 61-67 .
![]() | |
7. |
周胜杰,于刚,马振华. 养殖波纹唇鱼雌鱼形态性状对体质量的相关性及通径分析. 海洋科学. 2023(07): 44-52 .
![]() | |
8. |
余家旺,王耀嵘,林星桦,沈奕君,李广丽,黄洋,朱春华,田昌绪. 12月龄多鳞鱚形态性状对体质量的影响. 广东海洋大学学报. 2022(01): 137-143 .
![]() | |
9. |
王晓龙,李莉,王雪,菅玉霞,高凤祥,郭文,宋宗诚,岳新璐,胡发文. 6月龄斑头鱼形态性状与体质量的相关性和通径分析. 渔业研究. 2022(01): 52-59 .
![]() | |
10. |
方伟,陈明强,李有宁,马振华,赵旺,温为庚,邓正华,于刚,王雨. 凸加夫蛤(Gafrarium tumidum)形态性状对体质量性状的相关性及通径分析. 中国渔业质量与标准. 2022(02): 47-53 .
![]() | |
11. |
袁岩聪,何航,刘瑛,田庆兵,罗辉,章杰. 不同营养型水库对鳙形态性状和风味物质的影响. 淡水渔业. 2022(03): 91-97 .
![]() | |
12. |
李俊伟,罗志平,区又君,李加儿,胡瑞萍,温久福. 不同规格黄鳍鲷的形态性状与体质量的相关性研究. 生态科学. 2022(04): 9-15 .
![]() | |
13. |
闫卉果,董智玲,李雨,马婷婷,罗辉,叶华,何文平. 基于通径分析和灰色关联分析岩原鲤形态特征与体质量的关系. 西南大学学报(自然科学版). 2022(05): 74-81 .
![]() | |
14. |
虞为,林黑着,马振华,吴洽儿,陈雪晴,杨育凯,黄小林,黄忠,赵旺,李涛,周传朋. 4月龄豹纹鳃棘鲈形态性状对体质量的影响分析. 南方水产科学. 2022(06): 146-151 .
![]() | |
15. |
方伟,周胜杰,赵旺,杨蕊,胡静,于刚,马振华. 黄鳍金枪鱼5月龄幼鱼形态性状对体质量的相关性及通径分析. 南方水产科学. 2021(01): 52-58 .
![]() | |
16. |
周胜杰,杨蕊,于刚,吴洽儿,马振华. 青干金枪鱼和小头鲔循环水养殖生长研究. 水产科学. 2021(03): 339-346 .
![]() | |
17. |
吴新燕,梁宏伟,罗相忠,沙航,邹桂伟. 不同月龄长丰鲢形态性状对体质量的影响. 南方水产科学. 2021(03): 62-69 .
![]() | |
18. |
牟恩镟,申屠琰,熊玉凤,朱卫东,王志铮. 池塘专养模式下中华鳖养成品形态性状对体质量和净体质量的影响效应. 浙江海洋大学学报(自然科学版). 2021(01): 22-28+79 .
![]() | |
19. |
牛莹月,罗志平,区又君,蓝军南,温久福,李加儿,周慧. 不同盐度对四指马鲅幼鱼存活及鳃组织形态变化的影响. 南方农业学报. 2021(06): 1719-1726 .
![]() | |
20. |
樊佳佳,马冬梅,朱华平,黄樟翰,黄剑华,李辉安. F_5代禾花鲤形态性状对体质量的影响. 广东农业科学. 2021(08): 124-130 .
![]() | |
21. |
王雅丽,王语同,孙晶,卢运超,陈天楠,王于众,舒锐,吴丛迪,胡鲲. 可控式集装箱养殖模式对乌鳢营养组成、组织形态及肠道菌群的影响. 海洋渔业. 2021(05): 573-585 .
![]() | |
22. |
童立豪,谭凡民,罗砚,倪孔平. 红树林人工湿地生态养殖黄鳍鲷形态性状对体质量的影响. 广西科学院学报. 2021(03): 248-255 .
![]() | |
23. |
蓝军南,区又君,温久福,李俊伟,牛莹月,李加儿. 四指马鲅性逆转过程初步研究. 南方水产科学. 2020(06): 67-74 .
![]() |