Citation: | WANG Yongchang, ZHU Junxian, LI Jiansong, CHEN Chen, JI Liqin, HONG Xiaoyou, LIU Xiaoli, WANG Yakun, WU Congcong, YU Wenjun, LUO Laifu, CHEN Haigang, WEI Chengqing, ZHU Xinping, ZHANG Junjie, LI Wei. Molecular characterization of Dkkl1 gene and its response to exogenous hormone treatment in Pelodiscus sinensis[J]. South China Fisheries Science, 2023, 19(6): 166-172. DOI: 10.12131/20230144 |
Dkkl1 gene plays an important role in mammalian testicular development and spermatogenesis, but the research of Dkkl1 gene in turtles is still limited. Therefore, in order to explore its potential function and mechanism of action in turtles, we cloned a cDNA fragment of Dkkl1 gene from Chinese soft-shelled turtle (Pelodiscus sinensis), and analyzed its sequence characteristics, expression pattern and response to exogenous hormone treatment. The cDNA of Dkkl1 gene was 823 bp in length, with 3' UTR of 67 bp, 5' UTR of 90 bp, open reading frame of 666 bp, and encoded 222 amino acids in total. Dkkl1 protein is a kind of alkaline protein with poor stability and high hydrophilicity. The secondary and tertiary structures of Dkkl1 protein are mainly dominated by α-helix and irregular coil. Amino acid sequence homology comparison showed high similarity with Chinemys reevesii Dkkl1 protein (81%), but low homology with Dermochelys coriacea Dkkl1 protein (70%). RT-PCR and RT-qPCR analyses reveal that Dkkl1 mRNA was significantly highly expressed in spermathecae of 3-winter-age P. sinensis adults (P<0.001), while it was hardly expressed in the rest of somatic tissues. Moreover, the expression of Dkkl1 gene in P. sinensis spermathecae gradually increased with age and peaked at 3-winter-age. In addition, both 17β-estradiol and 17α-methyltestosterone treatments significantly inhibited the expression of Dkkl1 gene in adult P. sinensis spermathecae (P<0.05). The results suggest that the Dkkl1 gene might play an important role in the process of testicular development and spermatogenesis in P. sinensis.
[1] |
GLINKA A, WU W, DELIUS H, et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction[J]. Nature, 1998, 391(6665): 357-362. doi: 10.1038/34848
|
[2] |
HU Y, LIU M Y, XU S W, et al. The clinical significance of Dickkopf Wnt signaling pathway inhibitor gene family in head and neck squamous cell carcinoma[J]. Med Sci Monit, 2020, 26: e927368.
|
[3] |
DOUCET D, BRUBAKER C, TURNER D, et al. Factors affecting the role of canonical Wnt inhibitor Dickkopf-1 in cancer progression[J]. Front Oncol, 2023, 131114822.
|
[4] |
KANEKO K J, DEPAMPHILIS M L. Soggy, a spermatocyte-specific gene, lies 3.8 kb upstream of and antipodal to TEAD-2, a transcription factor expressed at the beginning of mouse development[J]. Nucleic Acids Res, 2000, 28(20): 3982-3990. doi: 10.1093/nar/28.20.3982
|
[5] |
YAN Q X, WU X P, CHEN C R, et al. Developmental expression and function of DKKL1/Dkkl1 in humans and mice[J]. Reprod Biol Endocrinol, 2012, 10: 51. doi: 10.1186/1477-7827-10-51
|
[6] |
KOHN M J, SZTEIN J, YAGI R, et al. The acrosomal protein Dickkopf-like 1 (DKKL1) facilitates sperm penetration of the zona pellucida[J]. Fertil Steril, 2010, 93(5): 1533-1537. doi: 10.1016/j.fertnstert.2009.06.010
|
[7] |
KANEKO K J, KOHN M J, LIU C, et al. The acrosomal protein Dickkopf-like 1 (DKKL1) is not essential for fertility[J]. Fertil Steril, 2010, 93(5): 1526-1532. doi: 10.1016/j.fertnstert.2009.06.011
|
[8] |
颜秋霞, 唐爱发, 来永庆, 等. 精子顶体相关基因DKKL1在正常人和男性不育患者睾丸组织中的表达差异[J]. 实用医学杂志, 2014, 30(1): 36-39. doi: 10.3969/j.issn.1006-5725.2014.01.014
|
[9] |
颜秋霞, 马义, 陈润强, 等. 弱精子症患者精子中DKKL1的表达[J]. 南方医科大学学报, 2018, 38(3): 324-328. doi: 10.3969/j.issn.1673-4254.2018.03.13
|
[10] |
CHEN H, HUANG Y F, LIU T F, et al. Characteristics of seasonal spermatogenesis in the soft-shelled turtle[J]. Anim Reprod Sci, 2020, 214106307.
|
[11] |
何中央, 张海琪, 周凡, 等. 中华鳖 “浙新花鳖”[J]. 中国水产, 2017(3): 80-88.
|
[12] |
YANG Y N, LI C, SONG W, et al. Purification, optimization and physicochemical properties of collagen from soft-shelled turtle calipash[J]. Int J Biol Macromol, 2016, 89: 344-352. doi: 10.1016/j.ijbiomac.2016.04.048
|
[13] |
朱道玉, 吴红松. 中华鳖精巢发育的组织学观察[J]. 安徽农业科学, 2009, 37(22): 10522-10524, 10677. doi: 10.3969/j.issn.0517-6611.2009.22.079
|
[14] |
朱道玉. 中华鳖性腺的发生与发育研究[J]. 水生生物学报, 2009, 33(5): 924-930.
|
[15] |
LI W, ZHU J X, LEI L, et al. The seasonal and stage-specific expression patterns of HMGB2 suggest its key role in spermatogenesis in the Chinese soft-shelled turtle (Pelodiscus sinensis)[J]. Biochem Genet, 2022, 60(6): 2489-2502. doi: 10.1007/s10528-022-10229-0
|
[16] |
LEI L, ZHU J X, CHEN C, et al. Expression and characterization of the Spats1 gene and its response to E2/MT treatment in the Chinese soft-shelled turtle (Pelodiscus sinensis)[J]. Animals, 2022, 12(14): 1858. doi: 10.3390/ani12141858
|
[17] |
ZHOU Y J, SUN W, CAI H, et al. The role of anti-Müllerian hormone in testis differentiation reveals the significance of the TGF-β pathway in reptilian sex determination[J]. Genetics, 2019, 213(4): 1317-1327. doi: 10.1534/genetics.119.302527
|
[18] |
THIRUMALAI A, PAGE S T. Androgens in male contraception[J]. Best Pract Res Clin Endocrinol Metab, 2022, 36(5): 101627. doi: 10.1016/j.beem.2022.101627
|
[19] |
HESS R A, SHARPE R M, HINTON B T. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens[J]. Differentiation, 2021, 118: 41-71. doi: 10.1016/j.diff.2020.11.004
|
[20] |
DEAN R, MANK J E. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data[J]. J Evol Biol, 2014, 27(7): 1443-1453. doi: 10.1111/jeb.12345
|
[21] |
ROSATI L, AGNESE M, DI FIORE M M, et al. P450 aromatase: a key enzyme in the spermatogenesis of the Italian wall lizard, Podarcis sicula[J]. J Exp Biol, 2016, 219(15): 2402-2408. doi: 10.1242/jeb.135996
|
[22] |
VERDERAME M, LIMATOLA E, SCUDIERO R. Ectopic synthesis of vitellogenin in testis and epididymis of estrogen-treated lizard Podarcis sicula[J]. Gen Comp Endocrinol, 2016, 235: 57-63.
|
[23] |
PASSINI G, STERZELECKI F C, DE CARVALHO C V A, et al. 17α-Methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation[J]. Theriogenology, 2018, 106: 134-140. doi: 10.1016/j.theriogenology.2017.10.015
|
[24] |
ROUGE M, DROUAULT M, HANOUX V, et al. Ex vivo effects of 17β-estradiol on the prepubertal rat testis[J]. Reprod Toxicol, 2023, 118: 108363. doi: 10.1016/j.reprotox.2023.108363
|
[25] |
ARTIMO P, JONNALAGEDDA M, ARNOLD K, et al. ExPASy: SIB bioinformatics resource portal[J]. Nucl Acids Res, 2012, 40(W1): W597-W603. doi: 10.1093/nar/gks400
|
[26] |
ZHANG Y, ZHANG Y, XU L, et al. Molecular cloning, tissue expression and polymorphism analysis of the Caveolin-3 gene in ducks[J]. Brit Poultry Sci, 2021, 62(1): 17-24. doi: 10.1080/00071668.2020.1817324
|
[27] |
KOHLI D K, BACHHAWAT A K. CLOURE: Clustal Output Reformatter, a program for reformatting ClustalX/ClustalW outputs for SNP analysis and molecular systematics[J]. Nucleic Acids Res, 2003, 31(13): 3501-3502. doi: 10.1093/nar/gkg502
|
[28] |
CHEN J S, ZHU N Y, KONG L, et al. First case of soft shell disease in Chinese soft-shelled turtle (Trionyx sinens) associated with Aeromonas sobria: A. veronii complex[J]. Aquaculture, 2013, 406/407: 62-67. doi: 10.1016/j.aquaculture.2013.05.006
|
[29] |
HUANG X, LIANG Y, ZHANG R, et al. Genome-wide identification of the PP2C gene family and analyses with their expression profiling in response to cold stress in wild sugarcane[J]. Plants (Basel), 2023, 12(13): 2418.
|
[30] |
GEOURJON C, DELEAGE G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Bioinformatics, 1995, 11(6): 681-684. doi: 10.1093/bioinformatics/11.6.681
|
[31] |
ANDREW W, MARTINO B, STEFAN B, et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucl Acids Res, 2018, 46(W1): W296-W303. doi: 10.1093/nar/gky427
|
[32] |
祝骏贤, 陈辰, 刘晓莉, 等. 中华鳖组蛋白H2A变体克隆及其在卵母细胞中的表达分析[J]. 水生生物学报, 2021, 45(6): 1207-1213.
|
[33] |
YANG Y F, WU J H, LIN R L, et al. Seasonal spermatogenesis, epididymal storage, and creatine kinase expression in Pelodiscus sinensis[J]. Anim Reprod Sci, 2023, 249: 107198. doi: 10.1016/j.anireprosci.2023.107198
|
[34] |
di FIORE M, SANTILLO A, FALVO S, et al. Molecular mechanisms elicited by d-aspartate in leydig cells and spermatogonia[J]. Int J Mol Sci, 2016, 17(7): 1127. doi: 10.3390/ijms17071127
|
[35] |
JIANG Y J, LUO H R, HOU M X, et al. Aromatase inhibitor induces sex reversal in the protogynous hermaphroditic rice field eel (Monopterus albus)[J]. Aquaculture, 2022, 551: 737960. doi: 10.1016/j.aquaculture.2022.737960
|
[36] |
ZHU Q, HAN C, LIU S, et al. Development and gene expression analysis of gonad during 17α-methyltestosterone-induced sex reversal in mandarin fish (Siniperca chuatsi)[J]. Aquac Rep, 2022, 23: 101049. doi: 10.1016/j.aqrep.2022.101049
|
[37] |
ASAD F, NAZ S, ALI T, et al. Effect of natural and synthetic androgen hormone on sex reversal of Nile tilapia (Oreochromis niloticus)[J]. Braz J Biol, 2023, 84: e272413.
|
[38] |
XU G F, HUANG T Q, GU W, et al. Effects of letrozole and 17α-methyltestosterone on gonadal development in all-female triploid rainbow trout (Oncorhynchus mykiss)[J]. Aquac Res, 2021, 52(6): 2460-2469. doi: 10.1111/are.15095
|
[39] |
STEWART M K, MATTISKE D M, PASK A J. Exogenous oestrogen impacts cell fate decision in the developing gonads: a potential cause of declining human reproductive health[J]. Int J Mol Sci, 2020, 21(21): 8377. doi: 10.3390/ijms21218377
|
[40] |
CHAVES-POZO E, LIARTE S, VARGAS-CHACOFF L, et al. 17Beta-estradiol triggers postspawning in spermatogenically active gilthead seabream (Sparus aurata L.) males[J]. Biol Reprod, 2007, 76(1): 142-148. doi: 10.1095/biolreprod.106.056036
|
[41] |
WALKER W H. Androgen actions in the testis and the regulation of spermatogenesis[J]. Adv Exp Med Biol, 2021, 1288: 175-203.
|
[42] |
DAKHOVA O, O'DAY D, KINET N, et al. Dickkopf-like1 regulates postpubertal spermatocyte apoptosis and testosterone production[J]. Endocrinology, 2009, 150(1): 404-412. doi: 10.1210/en.2008-0673
|
[43] |
JUNIOR M Z, NAUFAL M R, SETIAWATI M, et al. The sex ratio and testosterone levels in tilapia immersed in different doses of 17α-methyltestosterone[J]. J Akuakultur Indonesia, 2017, 16(1): 51-59. doi: 10.19027/jai.16.1.51-59
|