FAN Xiaoxu, LIN Shen, LIU Dan, TIAN Wei, JIANG Mei, LI Lei. Study on adhesion characteristics of fouling organisms of ultra-high molecular weight polyethylene and copper alloys mesh[J]. South China Fisheries Science, 2023, 19(6): 30-37. DOI: 10.12131/20230135
Citation: FAN Xiaoxu, LIN Shen, LIU Dan, TIAN Wei, JIANG Mei, LI Lei. Study on adhesion characteristics of fouling organisms of ultra-high molecular weight polyethylene and copper alloys mesh[J]. South China Fisheries Science, 2023, 19(6): 30-37. DOI: 10.12131/20230135

Study on adhesion characteristics of fouling organisms of ultra-high molecular weight polyethylene and copper alloys mesh

More Information
  • Received Date: July 11, 2023
  • Revised Date: July 31, 2023
  • Accepted Date: August 31, 2023
  • Available Online: September 13, 2023
  • In order to study the adhesion characteristics of fouled organisms on different materials of mesh, we had carried out on-site hanging experiments of ultra-high molecular weight polyethylene mesh and copper alloy mesh in the waters of Nanri Island, Putian City, Fujian Province during March−May 2022 (Spring) and June−August 2022 (Summer). The results reveal that the attachment of the two kinds of fouled organisms showed certain seasonal differences. The compactness, quantity of species, quantity of dominant species, wet mass and density of the two net-coated stained organisms were lower in spring than in summer. In spring and summer, for ultra-high molecular weight polyethylene mesh, the average compactnesses were 47.19% and 86.98%, respectively; the average wet masses of fouling organisms were (144.83±15.69) and (1 054.59±34.81) g·net−1, respectively; the average densities were (2 699±49) and (4 630±53) ind·net−1, respectively; the quantities of species were 12 and 35, respectively; the quantities of dominant species were 4 and 6, respectively. In spring and summer, for copper alloy mesh, the average compactnesses were 41.04% and 74.95%, respectively; the average wet masses of fouling organisms were (118.32±20.13) and (876.25±23.16) g·net−1, respectively; the average densities were (2 678±42) and (3 870±64) ind·net−1, respectively; the quantities of species were 12 and 19, respectively; the quantities of dominant species were 3 and 4, respectively. The compactness, quantity of species (The same in spring), quantity of dominant species (The same in spring), wet mass and density of ultra-high molecular weight polyethylene mesh were higher than those of copper alloy mesh in spring and summer. The change of seawater temperature is the main reason for the seasonal difference of fouling organisms, and the anti-fouling biological adhesion effect of copper alloy mesh is better than that of ultra-high molecular weight polyethylene mesh.

  • [1]
    EDWARDS P, ZHANG W, BELTON B, et al. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported[J]. Mar Policy, 2019, 106: 103547. doi: 10.1016/j.marpol.2019.103547
    [2]
    BRAITHWAITE R A, CARRASCOSA M C C, MCEVOY L A. Biofouling of salmon cage netting and the efficacy of a typical copper-based antifoulant[J]. Aquaculture, 2007, 262(2/3/4): 219-226.
    [3]
    PHILLIPPI A L, O'CONNOR N J, LEWIS A F, et al. Surface flocking as a possible anti-biofoulant[J]. Aquaculture, 2001, 195(3/4): 225-238.
    [4]
    ECKMAN J E, THISTLE D, BURNETT W C, et al. Performance of cages as large animal-exclusion devices in the deep sea[J]. J Mar Res, 2001, 59(1): 79-95. doi: 10.1357/002224001321237371
    [5]
    CRONIN E R, CHESHIRE A C, CLARKE S M, et al. An investigation into the composition, biomass and oxygen budget of the fouling community on a tuna aquaculture farm[J]. Biofouling, 1999, 13(4): 279-299. doi: 10.1080/08927019909378386
    [6]
    TAN C K F, NOWAK B F, HODSON S L. Biofouling as a reservoir of Neoparamoeba pemaquidensis (Page, 1970), the causative agent of amoebic gill disease in Atlantic salmon[J]. Aquaculture, 2002, 210(1/2/3/4): 49-58.
    [7]
    WADDY S L, BURRIDGE L E, HAMILTON M N, et al. Emamectin benzoate induces molting in American lobster, Homarus americanus[J]. Can J Fish Aquat Sci, 2002, 59(7): 1096-1099. doi: 10.1139/f02-106
    [8]
    HODSON S L, BURKE C M, BISSETT A P. Biofouling of fish-cage netting: the efficacy of a silicone coating and the effect of netting colour[J]. Aquaculture, 2000, 184(3/4): 277-290.
    [9]
    KALANTZI I, ZERI C, CATSIKI V, et al. Assessment of the use of copper alloy aquaculture nets: potential impacts on the marine environment and on the farmed fish[J]. Aquaculture, 2016, 465: 209-222. doi: 10.1016/j.aquaculture.2016.09.016
    [10]
    石建高, 余雯雯, 赵奎, 等. 海水网箱网衣防污技术的研究进展[J]. 水产学报, 2021, 45(3): 472-485.
    [11]
    GONZÁLEZ E P, HURTADO C F, GACE L, et al. Economic impacts of using copper alloy mesh in trout aquaculture: Chilean example[J]. Aquac Econ Manag, 2013, 17(1): 71-86. doi: 10.1080/13657305.2013.747227
    [12]
    周文博, 余雯雯, 石建高, 等. 超高分子量聚乙烯纤维在渔业领域的应用与研究进展[J]. 渔业信息与战略, 2018, 33(3): 186-194.
    [13]
    吴加文, 李众, 林和山, 等. 兴化湾污损生物群落结构及其时空格局[J]. 应用海洋学学报, 2019, 38(4): 578-584. doi: 10.3969/J.ISSN.2095-4972.2019.04.013
    [14]
    BI C W, ZHAO Y P, DONG G H, et al. Drag on and flow through the hydroid-fouled nets in currents[J]. Ocean Eng, 2018, 161: 195-204. doi: 10.1016/j.oceaneng.2018.05.005
    [15]
    张明明, 赵文, 于世超. 我国海洋污损生物的研究概况[J]. 水产科学, 2008, 27(10): 545-549.
    [16]
    严涛, 刘姗姗, 曹文浩. 中国沿海水产设施污损生物特点及防除途径[J]. 海洋通报, 2008, 27(1): 102-110. doi: 10.3969/j.issn.1001-6392.2008.01.015
    [17]
    CLARE A S, HØEG J T. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature[J]. Biofouling, 2008, 24(1): 55-57. doi: 10.1080/08927010701830194
    [18]
    CALLOW M E, CALLOW J E. Marine biofouling: a sticky problem[J]. Biologist, 2002, 49(1): 10-14.
    [19]
    周家丽, 刘丽, 王学锋, 等. 中国沿海污损生物研究进展综述[J]. 南方论坛, 2021, 52(10): 27-32.
    [20]
    林和山, 王建军, 郑成兴, 等. 东山湾污损生物生态研究[J]. 海洋学报, 2012, 34(6): 160-169.
    [21]
    林更铭, 项鹏, 李炳乾, 等. 厦门港污损生物物种多样性和分布特征[J]. 海洋湖沼通报, 2010, 12(3): 65-72. doi: 10.3969/j.issn.1003-6482.2010.03.011
    [22]
    CARVALHO M L, DOMA J, SZTYLER M, et al. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components[J]. Bioelectrochemistry, 2014, 97: 2-6. doi: 10.1016/j.bioelechem.2013.12.005
    [23]
    CHAMBERS M. Comparative growth and survival of juvenile Atlantic cod (Gadus morhua) cultured in copper and nylon net pens[J]. J Aquac Res Dev, 2012, 3(5): 137-142.
    [24]
    BUYUKATES Y. Environmental monitoring around an offshore fish farm with copper alloy mesh pens in the Northern Aegean Sea[J]. J Environ Prot, 2017, 6(2): 50-61.
  • Related Articles

    [1]ZHU Shuli, CHEN Weitao, WU Zhi, XIA Yuguo, YANG Jiping, LI Yuefei, LI Jie. Preliminary investigation of fish diversity in middle and lower reaches of Pearl River based on environmental DNA technology[J]. South China Fisheries Science, 2024, 20(1): 120-129. DOI: 10.12131/20230111
    [2]XIE Yufang, WU Peng, LIU Yong, XIAO Yayuan, TANG Guanglong, WANG Teng, LIN Lin, LI Chunhou. Study on habitat suitability of Coilia mystus in Pearl River Estuary, China[J]. South China Fisheries Science, 2023, 19(1): 22-29. DOI: 10.12131/20220029
    [3]LI Hongting, ZHANG Shuai, ZOU Keshu, CHEN Zuozhi, CHEN Xiaolei, JIANG Peiwen, CAO Yiting, LI Min. Establishment and optimization of environmental DNA extraction method from water of Pearl River Estuary[J]. South China Fisheries Science, 2022, 18(3): 30-37. DOI: 10.12131/20210304
    [4]CHEN Zhi, CAI Xingwei, ZHANG Qingfeng, LI Gaojun, MA Chunlai, SHEN Zhixin. Preliminary construction and comparative analysis of environmental DNA metabarcoding reference database of freshwater fishes in Hainan Island[J]. South China Fisheries Science, 2022, 18(3): 1-12. DOI: 10.12131/20210339
    [5]XIONG Pengli, CHEN Zuozhi, HOU Gang, ZHANG Shuai, QIU Yongsong, FAN Jiangtao, XU Shannan. Decadal change in biological traits of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2021, 17(6): 31-38. DOI: 10.12131/20210072
    [6]YAN Yali, ZHANG Nan, GUO Huayang, GUO Liang, ZHU Kecheng, LIU Baosuo, ZHANG Dianchang. Species identification and phylogenetic relationship in Siganidae based on DNA barcoding[J]. South China Fisheries Science, 2019, 15(1): 100-105. DOI: 10.12131/20180083
    [7]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [8]GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15.
    [9]WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45.
    [10]YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34.
  • Cited by

    Periodical cited type(11)

    1. 郭瑶杰,万武波,王海山,叶乐,陈治. 3组常用鱼类eDNA宏条形码通用引物对三亚水环境样品的物种检出效果比较. 南方水产科学. 2025(01): 66-76 . 本站查看
    2. 薛向平,孙朝徽,刘霞,惠筠,李学军,李秀启,司飞. 基于COI基因的黄河河南-山东段鲤群体遗传结构分析. 淡水渔业. 2025(02): 43-52 .
    3. 朱书礼,陈蔚涛,武智,夏雨果,杨计平,李跃飞,李捷. 基于环境DNA技术的珠江中下游鱼类多样性初步研究. 南方水产科学. 2024(01): 120-129 . 本站查看
    4. 于耀鲜,邢冉冉,邓婷婷,王琳,卢思远,王宏勋,王丽梅,陈颖. 基于重组酶介导等温扩增-CRISPR/Cas12a的青鱼物种快速鉴定研究. 食品安全质量检测学报. 2024(04): 40-48 .
    5. 徐颖琪,梁绪虹,陈新军,宋成辉,彭祖焜,王丛丛. 基于COⅠ基因构建西北太平洋常见鱼类DNA条形码参考数据库. 上海海洋大学学报. 2024(04): 823-835 .
    6. 张浩博,王晓艳,陈治,钟兰萍,高天翔. 基于环境DNA metabarcoding的舟山及其邻近海域鱼类空间分布格局的初步研究. 水产学报. 2024(08): 125-138 .
    7. 李筱芹,吴开阳,倪达富,杨丽亚,鲁桃秀,张连博,邓华堂,吴彤飞,何荣超,付梅,姚维志,吕红健. 基于环境DNA技术的梯级水坝对长江上游重要支流鱼类多样性的影响研究——以綦江为例. 生态学报. 2024(19): 8865-8883 .
    8. 陈炳耀,信誉,路方婷,孙婧,刘杉,李敏,吴斌,王崇瑞,张衡,周玉香,白玲. 长江江豚监测现状及展望. 中国环境监测. 2023(02): 1-10 .
    9. 陈治,蔡杏伟,申志新,张清凤,李芳远,谷圆,李高俊,赵光军,王镇江. 海南岛淡水鱼类eDNA宏条形码COⅠ通用引物的筛选. 渔业科学进展. 2023(06): 40-57 .
    10. 刘乙蒙,刘洋,刘必林,俞晔伟,宋成辉,王丛丛. Cyt b和12S rRNA基因条形码在灯笼鱼科鱼类物种鉴定中的应用. 中国水产科学. 2023(09): 1112-1126 .
    11. 蒋佩文,李敏,张帅,陈作志,徐姗楠. 基于环境DNA宏条码和底拖网的珠江河口鱼类多样性. 水生生物学报. 2022(11): 1701-1711 .

    Other cited types(5)

Catalog

    Article views (289) PDF downloads (43) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return