LIANG Long, SONG Dade, KANG Zhongjie, ZHANG Hushun, LI Guodong, WU Xiaorui, LI Dongjia, WANG Shuyan, YAN Xin, ZHU Fei, XIONG Ying. Otolith landmark-based relationship analysis of two Larimichthys polyactis subpopulations in Southern Yellow Sea and East China Sea[J]. South China Fisheries Science, 2023, 19(6): 21-29. DOI: 10.12131/20230120
Citation: LIANG Long, SONG Dade, KANG Zhongjie, ZHANG Hushun, LI Guodong, WU Xiaorui, LI Dongjia, WANG Shuyan, YAN Xin, ZHU Fei, XIONG Ying. Otolith landmark-based relationship analysis of two Larimichthys polyactis subpopulations in Southern Yellow Sea and East China Sea[J]. South China Fisheries Science, 2023, 19(6): 21-29. DOI: 10.12131/20230120

Otolith landmark-based relationship analysis of two Larimichthys polyactis subpopulations in Southern Yellow Sea and East China Sea

More Information
  • Received Date: June 21, 2023
  • Revised Date: August 22, 2023
  • Accepted Date: August 31, 2023
  • Available Online: September 12, 2023
  • To compare the otolith morphology of different Larimichthys polyactis populations, and to further clarify their population division, we applied the landmark method better at extracting morphological features for the first time, to explore the morphological differences of otoliths from L. polyactis populations in the Southern Yellow Sea and East China Sea. From March to December 2022, 30 individuals of 1-year old fish had been collected from each from Haizhou Bay (HZB), Lyusi (LS), Yangtze Estuary (YTE) and Zhoushan (ZS) fishing grounds. After extracting the left sagittal otoliths, we seclected even landmarks in otolith contour and four landmarks in sulcus acusticus for the landmark analysis. Results show that: 1) Among the 11 landmarks, those in sulcus acusticus (Landmark 8−11) had main contribution (91.88%) in explaining the main source of morphological variation, while those in otolith contour (Landmark 1−7) just had 8.12%, which reveals that the differences in otolith morphology among the four geographical groups mainly came from the auditory sulcus of otolith. 2) According to the scatter plot of principal component analysis, part of the Haizhou Bay population was significantly divided into one group, while the remaining Haizhou Bay fishing grounds and all other three fishing grounds had highly overlapped and clustered into another group, indicating that there might be two L. polyactis populations in the Southern Yellow Sea area, namely the Southern Yellow Sea-East China Sea group and the Northern Yellow Sea-Bohai Sea group. This also indicates that there were mixed L. polyactis populations in the Haizhou Bay fishing grounds. This may be explained by the long-term egg and larval dispersal process controlled by the current and active migratory routes during feeding and overwintering period. The results verified the potential of otolith morphology in delineating the populations of L. polyactis, providing valuable references for their spatiotemporal distribution.

  • [1]
    毛锡林, 俞积楚, 秦忆芹. 东海渔业资源调查与区划[M]. 上海: 华东师范大学出版社, 1987: 339-356.
    [2]
    FAO. Fishery and Aquaculture Statistics. Global capture production 1950–2022. Updated 2023[R/OL]. Rome: FAO Fisheries and Aquaculture Department, 2022.
    [3]
    CHOI M, KIM D. Assessment and management of small yellow croaker (Larimichthys polyactis) stocks in South Korea[J]. Sustainability, 2020, 12(19): 8257. doi: 10.3390/su12198257
    [4]
    农牧渔业部水产局. 东海区渔业资源调查和区划[M]. 上海: 华东师范大学出版社, 1987: 318-356.
    [5]
    SONG D D, XIONG Y, JIANG T, et al. Isotopic evidence of population connectivity at multiple life stages for Larimichthys polyactis in the Southern Yellow Sea and East China Sea[J]. Fishes, 2023, 8(3): 133. doi: 10.3390/fishes8030133
    [6]
    SONG D D, XIONG Y, JIANG T, et al. Early life migration and population discrimination of the small yellow croaker (Larimichthys polyactis) from the Yellow Sea: inferences from otolith Sr/Ca ratios[J]. J Oceanol Limnol, 2022, 40: 818-829. doi: 10.1007/s00343-021-1041-x
    [7]
    LI G D, XIONG Y, ZHONG X M, et al. Changes in overwintering ground of small yellow croaker (Larimichthys polyactis) based on MaxEnt and GARP models: a case study of the Southern Yellow Sea stock[J]. J Fish Biol, 2023, 102(6): 1358-1372. doi: 10.1111/jfb.15383
    [8]
    刘勇, 程家骅. 东海区小黄鱼海底水温分布特征及分析方法比较[J]. 中国水产科学, 2018, 25(2): 423-435.
    [9]
    徐兆礼, 陈佳杰. 再议中国近海小黄鱼种群的划分问题[J]. 应用生态学报, 2010, 21(11): 2856-2864.
    [10]
    JIANG Y Q, ZHANG C, YE Z J, et al. Analyses of egg size, otolith shape, and growth revealed two components of small yellow croaker in Haizhou Bay spawning stock[J]. J Oceanol Limnol, 2018, 37(4): 1423-1429.
    [11]
    林新濯, 邓思明, 黄正一. 小黄鱼种族生物学测定的研究[C]//海洋渔业资源论文选集. 北京: 农业出版社, 1965: 84-108.
    [12]
    林龙山, 姜亚洲, 刘尊雷, 等. 黄海南部和东海小黄鱼资源分布差异性研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(3): 1-6. doi: 10.16441/j.cnki.hdxb.2010.03.001
    [13]
    HAN Z Q, LIN L S, SHUI B N, et al. Genetic diversity of small yellow croaker (Larimichthys polyactis) revealed by AFLP markers[J]. Afr J Agric Res, 2009, 4(7): 605-610.
    [14]
    LIU B J, ZHANG B D, XUE D X, et al. Population structure and adaptive divergence in a high gene flow marine fish: the small yellow croaker (Larimichthys polyactis)[J]. PLoS One, 2016, 11(4): e0154020. doi: 10.1371/journal.pone.0154020
    [15]
    ZHANG B D, LI Y L, XUE D X, et al. Population genomic evidence for high genetic connectivity among populations of small yellow croaker (Larimichthys polyactis) in inshore waters of China[J]. Fish Res, 2020, 225: 105505. doi: 10.1016/j.fishres.2020.105505
    [16]
    XIAO Y S, ZHANG Y, GAO T X, et al. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker (Larimichthys polyactis)[J]. Environ Biol Fishes, 2009, 85(4): 303-314. doi: 10.1007/s10641-009-9497-0
    [17]
    ZHENG J, ZHAO L , ZHAO X, et al. High genetic connectivity inferred from whole-genome resequencing provides insight into the Phylogeographic pattern of Larimichthys polyactis[J]. Mar Biotechnol, 2022, 24: 671-680. doi: 10.1007/s10126-022-10134-y
    [18]
    PANNELLA G. Fish Otoliths: daily growth layers and periodical patterns[J]. Science, 1971, 173(4002): 1124-1127. doi: 10.1126/science.173.4002.1124
    [19]
    SCHULZ-MIRBACH T, LADICH F, PLATH M, et al. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths[J]. Biol Rev, 2019, 94: 457-482. doi: 10.1111/brv.12463
    [20]
    DUNCAN R, BROPHY D, ARRIZABALAGA H. Otolith shape analysis as a tool for stock separation of albacore tuna feeding in the Northeast Atlantic[J]. Fish Res, 2018, 200: 68-74. doi: 10.1016/j.fishres.2017.12.011
    [21]
    欧利国, 刘必林. 基于地标点法的4种鲹科鱼类矢耳石形态分类[J]. 大连海洋大学学报, 2020, 35(1): 114-120.
    [22]
    SADEGHI R, ESMARILI R, ZAREI F, et al. Population structure of the ornate goby, Istigobius ornatus (Teleostei: Gobiidae), in the Persian Gulf and Oman Sea as determined by otolith shape variation using ShapeR[J]. Environ Biol Fish, 2020, 103: 1217-1230. doi: 10.1007/s10641-020-01015-1
    [23]
    IBÁÑEZ L, HERNÁNDEZ-FRAGA K, ALVAREZ-HERNÁNDEZ S. Discrimination analysis of phenotypic stocks comparing fish otolith and scale shapes[J]. Fish Res, 2017, 185: 6-13. doi: 10.1016/j.fishres.2016.09.025
    [24]
    叶振江, 孟晓梦, 高天翔, 等. 两种花鲈 (Lateolabrax sp.) 耳石形态的地理变异[J]. 海洋与湖沼, 2007, 38(4): 356-360. doi: 10.3321/j.issn:0029-814X.2007.04.010
    [25]
    REIG-BOLAÑO R, MARTI-PUIG P, RODRIGUEZ S, et al. Otoliths identifiers using image contours EFD[M]//de LEON F, de CARVALHO A P, RODRÍGUEZ-GONZÁLEZ S, et al. Distributed computing and artificial intelligence. Advances in intelligent and soft computing, vol 79. Berlin, Heidelberg: Springer, 2010: 9-16.
    [26]
    潘晓哲, 高天翔. 基于耳石形态的属鱼类鉴别[J]. 动物分类学报, 2010, 35(4): 799-805.
    [27]
    CAMPANA E, CASSELMAN M. Stock discrimination using otolith shape analysis[J]. Can J Fish Aquat Sci, 1993, 50(5): 1062-1083. doi: 10.1139/f93-123
    [28]
    王旭, 韩志强, 朱柏军, 等. 东海小黄鱼耳石形态特征研究[J]. 浙江海洋学院学报(自然科学版), 2012, 31(6): 492-496.
    [29]
    方聪, 郭治明, 线薇微, 等. 耳石形态在长江口小黄鱼生活史研究及群体识别中的应用[J]. 中国海洋大学学报(自然科学版), 2018, 48(08): 57-67. doi: 10.16441/j.cnki.hdxb.20170006
    [30]
    康中杰, 宋大德, 李纲, 等. 基于耳石不同切面的小黄鱼年龄鉴定及其生长方程年龄反演比较[J]. 海洋渔业, 2022, 44(5): 543-554.
    [31]
    水柏年. 黄海南部、东海北部小黄鱼的年龄与生长研究[J]. 浙江海洋学院学报, 2003, 22(1): 16-20.
    [32]
    徐兆礼, 陈佳杰. 小黄鱼洄游路线分析[J]. 中国水产科学, 2009, 16(6): 931-940.
    [33]
    姜涛, 郑朝臣, 黄洪辉, 等. 基于地标点法的九龙江口和珠江口凤鲚和七丝鲚耳石形态学特征比较[J]. 南方水产科学, 2018, 14(6): 10-16.
    [34]
    XIONG Y, YANG J, ZHANG Z H, et al. Factors affecting morphological development of the sagittal otolith in juvenile and adult small yellow croaker (Larimichthys polyactis Bleeker, 1877)[J]. J Appl Ichthyol, 2015, 31: 1023-1028. doi: 10.1111/jai.12914
    [35]
    JIANG Y Z, CHENG J H, LI S F. Temporal changes in the fish community resulting from a summer fishing moratorium in the northern East China Sea[J]. Mar Ecol Prog Ser, 2009, 387: 265-273. doi: 10.3354/meps08078
    [36]
    张申增, 麦广铭, 陈志劼, 等. 红鳍笛鲷和紫红笛鲷种类和群体的矢耳石地标点法识别[J]. 广东海洋大学学报, 2020, 40(2): 35-43.
    [37]
    侯刚, 刘丹丹, 冯波, 等. 基于地标点几何形态测量法识别北部湾4种白姑鱼矢耳石形态[J]. 中国水产科学, 2013, 20(6): 1293-1302.
    [38]
    VIGNON M. Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment[J]. J Exp Mar Biol Ecol, 2012, 420/421: 26-32. doi: 10.1016/j.jembe.2012.03.021
    [39]
    WANG L, LIU S F, ZHUANG Z M, et al. Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis)[J]. PLoS One, 2013, 8(12): e83493. doi: 10.1371/journal.pone.0083493
    [40]
    GU Y G, HUANG H H, LIANG Y, et al. Micro-CT and SEM investigation of sound absorption structure and chambers in the otoliths of giant panda fish species-Chinese Bahaba (Bahaba taipingensis)[J]. Micron, 2022: 103342.
    [41]
    MARTÍ-PUIG P, DANÉS J, MANJABACAS A, et al. New parameterisation method for three-dimensional otolith surface images[J]. Mar Freshw Res, 2016, 67(7): 1059. doi: 10.1071/MF15069
    [42]
    REN S, JIN X S, YANG T, et al. A dynamic energy budget model for small yellow croaker (Larimichthys polyactis): parameterisation and application in its main geographic distribution waters[J]. Ecol Model, 2020, 427: 109051. doi: 10.1016/j.ecolmodel.2020.109051
    [43]
    XIONG Y, ZHONG X M, TANG J H, et al. Migration and population structure characteristics of the small yellow croaker (Larimichthys polyactis) in the Southern Yellow Sea[J]. Acta Oceanologica Sinica, 2016, 35(6): 34-41. doi: 10.1007/s13131-016-0844-7
    [44]
    XIONG Y, YANG J, JIANG T, et al. Early life history of the small yellow croaker (Larimichthys polyactis) in sandy ridges of the South Yellow Sea[J]. Mar Biol Res, 2017, 13(9): 993-1002. doi: 10.1080/17451000.2017.1319067
    [45]
    XU M, WANG Y H, LIU Z L, et al. Seasonal distribution of the early life stages of the small yellow croaker (Larimichthys polyactis) and its dynamic controls adjacent to the Changjiang River Estuary[J]. Fish Oceanogr, 2023, 32(4): 390-404. doi: 10.1111/fog.12635
    [46]
    LIN N, CHEN Y G, JIN Y, et al. Distribution of the early life stages of small yellow croaker in the Yangtze River estuary and adjacent waters[J]. Fish Sci, 2018, 84(2): 357-363. doi: 10.1007/s12562-018-1177-6
    [47]
    LIAN E G, WANG S, ARTIGUE L, et al. Unraveling the synoptic-scale penetration of the Yellow Sea coastal water into the Changjiang River Estuary[J]. J Geophys Res-Oceans, 2022, 127: e2022JC018773. doi: 10.1029/2022JC018773
    [48]
    韦钦胜, 于志刚, 冉祥滨, 等. 黄海西部沿岸流系特征分析及其对物质输运的影响[J]. 地球科学进展, 2011, 26(2): 145-156.
    [49]
    黄康康, 叶振江, 于海庆, 等. 基于拉格朗日粒子追踪的黄海中南部小黄鱼幼体早期输运初步研究[J]. 浙江海洋大学学报(自然科学版), 2020, 39(6): 538-543.
    [50]
    ZHANG C, YE Z J, PANHWAR S K, et al. Stock discrimination of the Japanese Spanish mackerel (Scomberomorus niphonius) based on the otolith shape analysis in the Yellow Sea and Bohai Sea[J]. J Appl Ichthyol, 2013, 29: 368-373. doi: 10.1111/jai.12084
    [51]
    严利平, 李建生, 沈德刚, 等. 黄海南部、东海北部小黄鱼饵料组成和摄食强度的变化[J]. 海洋渔业, 2006, 28(2): 117-123. doi: 10.3969/j.issn.1004-2490.2006.02.006
  • Related Articles

    [1]TAN Zeyu, LI Tao, JIANG Jingzhe, HUANG Xiaolin, YANG Yukai. Observation of embryo and morphological development of larval, juvenile and young speckled snowmark clownfish (Amphiprion sp.)[J]. South China Fisheries Science, 2024, 20(2): 73-82. DOI: 10.12131/20230119
    [2]CHEN Qiuyu, ZHENG Xiaoting, ZHONG Jinsong, CHEN Zhibing, WANG Ying, LIANG Xueying, DONG Hongbiao, ZHANG Jiasong. Morphological characterization of embryonic development in Rana catesbeiana[J]. South China Fisheries Science, 2023, 19(6): 158-165. DOI: 10.12131/20230015
    [3]GUO Huayang, LIU Mingjian, GAO Jie, ZHU Kecheng, LIU Baosuo, GUO Liang, ZHANG Nan, SUN Jinhui, ZENG Chen, YANG Jingwen, LIU Bo, ZHANG Dianchang. Development of vertebral column and appendicular skeleton in larvae and juveniles of Platax teira[J]. South China Fisheries Science, 2022, 18(6): 93-99. DOI: 10.12131/20220058
    [4]LIU Mingjian, GUO Huayang, GAO Jie, ZHU Kecheng, LIU Baosuo, GUO Liang, ZHANG Nan, YANG Jingwen, LIU Bo, ZHANG Dianchang. Embryonic development and morphological characteristics of larvae and juvenile of Platax teira[J]. South China Fisheries Science, 2022, 18(4): 103-111. DOI: 10.12131/20210251
    [5]HAN Junjun, HE Jiangtao, CHEN Peng, HU Jiangwei, QI Feng, FENG Yonghui, CAI Lingang, SHI Chunming, ZHANG Renming. Observation on embryonic development, morphology and growth of larvae and juveniles of Aspiorhynchus laticeps[J]. South China Fisheries Science, 2021, 17(1): 59-66. DOI: 10.12131/20200177
    [6]YANG Yang, CHEN Yao, WAN Yufang, DENG Sihong, HE Xuefu, WANG Zhijian, JIN Li. Embryonic, larval and juvenile development of hybrid between Schizothorax wangchiachii and Percocypris pingipingi[J]. South China Fisheries Science, 2018, 14(6): 66-73. DOI: 10.12131/20180075
    [7]HUANG Xiaolin, LI Tao, LIN Heizhao, YANG Yukai, YU Wei, HUANG Zhong. Observation on embryonic development of cage-breeding Siganus oramin[J]. South China Fisheries Science, 2018, 14(2): 96-101. DOI: 10.3969/j.issn.2095-0780.2018.02.013
    [8]ZHAO Jianrong, XIE Chongyou, CAI Ruiyu, HUANG Jing, SU Shengqi, WANG Zhijian. A preliminary study on artificial propagation and embryonic development of Discogobio yunnanensis[J]. South China Fisheries Science, 2017, 13(5): 124-128. DOI: 10.3969/j.issn.2095-0780.2017.05.017
    [9]SUN Zhijing, JIANG Jufeng, FU Zhiru, WU Huimin, LIU Xiaolian, XIA Sudong, ZHANG Zhenguo, HAO Shuang, FENG Shouming. Observation of embryonic and larval development of blood parrot cichlid fish Cichlasoma synspilum×C.citrinellum[J]. South China Fisheries Science, 2014, 10(3): 38-46. DOI: 10.3969/j.issn.2095-0780.2014.03.006
    [10]MA Xuekun, LIU Xuezhou, WEN Haishen, ZHANG Lu. Embryonic and larval development in southern flounder Paralichthys lethostigma[J]. South China Fisheries Science, 2008, 4(1): 41-47.

Catalog

    Article views (311) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return