Citation: | MA Youcheng, ZHU Guoping, ZHANG Jian, WANG Xiao, ZHANG Honglin, SHI Jiangao. Influence of environmental factors on CPUE of three different fishing methods in skipjack tuna fisheries[J]. South China Fisheries Science, 2023, 19(6): 11-20. DOI: 10.12131/20230102 |
Skipjack tuna (Katsuwonus pelamis) is widely distributed in tropical and subtropical waters around the world and is a key target species in global tuna fishery. The abundance of its resources is influenced by various marine environmental factors. In order to explore the mechanisms by which precipitation affects the distribution and variation of resources in different K. pelamis stocks, based on the data from the pair trawl fishery in Mauritanian waters during 2017−2019, data from the purse seine fishery from the Western and Central Pacific Ocean during 2018−2020, and data from the longline fishery recorded on the IATTC website during 2010−2020, combining with environmental data such as precipitation, sea surface salinity (SSS) and sea surface temperature (SST), we analyzed the spatiotemporal distribution of catch per unit effort (CPUE) for three different fishing methods of skipjack tuna and its relationship with environmental factors such as precipitation by Generalized Additive Model (GAM). The findings indicate that month significantly influenced the CPUE of skipjack tuna for pair trawl and longline fishing methods (P<0.05). Latitude also had a significant effect on all the three fishing methods (P<0.05). Precipitation exhibited an extremely significant effect (P<0.001) on the CPUE of skipjack tuna for pair trawl fishing method and a significant effect (P<0.05) for purse seine fishing method. The trend of this effect was relatively consistent, with higher CPUE occurring within a more suitable range of precipitation. However, the effect of precipitation on the CPUE of skipjack tuna for longline fishing method was not significant. Sea surface salinity and sea surface temperature also had significant effects on the CPUE of skipjack tuna for all the three fishing methods (P<0.05). Hence, when analyzing the effects of environmental factors on fishery CPUE in the future, it is recommended to include precipitation in conventional marine environmental factors.
[1] |
COLLETE B B. FAO species catalogue, Vol 2. Scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date[J]. FAO Fish Synop, 1983, 125: 1-137.
|
[2] |
ZAINUDDIN M. Skipjack tuna in relation to sea surface temperature and chlorophyll-a concentration of Bone Bay using remotely sensed satellite data[J]. J Ilmu Teknol Kelaut, 2011, 3(1): 82-90.
|
[3] |
陈洋洋, 陈新军, 郭立新, 等. 基于捕捞努力量的中西太平洋鲣鱼围网渔业入渔预测分析[J]. 海洋学报, 2017, 39(10): 32-45.
|
[4] |
KIM J, NA H, PARK Y G, et al. Potential predictability of skipjack tuna (Katsuwonus pelamis) catches in the Western Central Pacific[J]. Sci Rep, 2020, 10(1): 3193-3199. doi: 10.1038/s41598-020-59947-8
|
[5] |
DRUON J, CHASSOT E, MURUA H, et al. Preferred feeding habitat of skipjack tuna in the eastern central Atlantic and western Indian Oceans: relations with carrying capacity and vulnerability to purse seine fishing[C]. Seychelles: IOTC Proceedings, 2016: 18-31.
|
[6] |
YEN K W, LU H J, HSIEH C H. Using remote sensing and catch data to detect ocean hot spots for skipjacks in the western central Pacific Ocean[J]. 台湾水产学会刊, 2012, 39(4): 235-246.
|
[7] |
朱若雅, 许子安, 汪金涛, 等. 基于捕捞努力量的中西太平洋鲣鱼栖息地适宜性指数模型优化[J]. 广东海洋大学学报, 2022, 42(6): 81-87.
|
[8] |
HSU T Y, CHANG Y, LEE M A, et al. Predicting skipjack tuna fishing grounds in the Western and Central Pacific Ocean based on high-spatial-temporal-resolution satellite data[J]. Remote Sens, 2021, 13(5): 861-877. doi: 10.3390/rs13050861
|
[9] |
方舟, 陈洋洋, 陈新军, 等. 基于不同环境因子的中西太平洋鲣鱼资源丰度灰色预测模型构建[J]. 海洋学研究, 2018, 36(4): 60-67.
|
[10] |
PUTRI A, ZAINUDDIN M. Impact of climate changes on skipjack tuna (Katsuwonus pelamis) catch during May–July in the Makassar Strait[J]. IOP Conf Ser: Earth Environ Sci, 2019, 253(1): 1-8.
|
[11] |
冯虎年, 陆化杰, 汪金涛. 中西太平洋围网鲣鱼CPUE时空分布与环境因子关系[J]. 广东海洋大学学报, 2023, 43(1): 33-40.
|
[12] |
LEHODEY P, SENINA I, CALMETTES B, et al. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries[J]. Climatic Change, 2013, 119: 95-109. doi: 10.1007/s10584-012-0595-1
|
[13] |
李亚楠, 陈新军. 印度洋鲣鱼围网资源渔场时空变化及其与ENSO的关系[J]. 海洋学报, 2017, 39(4): 72-78.
|
[14] |
DUERI S, BOPP L, MAURY O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Global Change Biol, 2014, 20(3): 742-753. doi: 10.1111/gcb.12460
|
[15] |
DRUON J N, CHASSOT E, MURUA H, et al. Skipjack tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans[J]. Front Mar Sci, 2017, 4: 315-332. doi: 10.3389/fmars.2017.00315
|
[16] |
ADLER R F, GU G, SAPIANO M, et al. Global precipitation: means, variations and trends during the satellite era (1979–2014)[J]. Surv Geophys, 2017, 38: 679-699. doi: 10.1007/s10712-017-9416-4
|
[17] |
TRENBERTH K E, SHEA D J. Relationships between precipitation and surface temperature[J]. Geophys Res Lett, 2005, 32(14): 1-4.
|
[18] |
LONG S M, XIE S P, ZHENG X T, et al. Fast and slow responses to global warming: sea surface temperature and precipitation patterns[J]. J Climate, 2014, 27(1): 285-299. doi: 10.1175/JCLI-D-13-00297.1
|
[19] |
MEYNECKE J O, LEE S Y, DUKE N C, et al. Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia[J]. Estuar Coast Shelf S, 2006, 69(3/4): 491-504.
|
[20] |
SOBRINO I, SILVA L, BELLIDO J, et al. Rainfall, river discharges and sea temperature as factors affecting abundance of two coastal benthic cephalopod species in the Gulf of Cadiz (SW Spain)[J]. B Mar Sci, 2002, 71(2): 851-865.
|
[21] |
MINTA S O. An assessment of the vulnerability of Ghana's coastal artisanal fishery to climate change[D]. Troms: Universitetet i Tromsø, 2003: 56.
|
[22] |
le PAPE O, CHAUVET F, DÉSAUNAY Y, et al. Relationship between interannual variations of the river plume and the extent of nursery grounds for the common sole (Solea solea, L.) in Vilaine Bay. Effects on recruitment variability[J]. J Sea Res, 2003, 50(2/3): 177-185.
|
[23] |
GILLSON J, SCANDOL J, SUTHERS I. Estuarine gillnet fishery catch rates decline during drought in eastern Australia[J]. Fish Res, 2009, 99(1): 26-37. doi: 10.1016/j.fishres.2009.04.007
|
[24] |
罗丽, 戴长雷, 李梦玲, 等. 基于GIS的黑龙江省多年平均降水量空间插值分析比较[J]. 吉林水利, 2021(10): 9-16.
|
[25] |
方舟, 陈洋洋, 陈新军, 等. 基于不同模型研究环境因子对中西太平洋鲣资源丰度的影响[J]. 中国水产科学, 2018, 25(5): 1123-1130.
|
[26] |
RODRIGUES M, de la RIVA J, FOTHERINGHAM S. Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression[J]. Appl Geogr, 2014, 48: 52-63. doi: 10.1016/j.apgeog.2014.01.011
|
[27] |
谢笑艳, 汪金涛, 陈新军, 等. 南印度洋长鳍金枪鱼渔获率与水深温度关系研究[J]. 南方水产科学, 2021, 17(5): 86-92.
|
[28] |
孙健勋. 结合环境因子的基里巴斯鲣鱼围网渔场兼捕现状及对策分析[D]. 上海: 上海海洋大学, 2022: 4.
|
[29] |
MAHADURAGE I G R. Environmental effect on the skipjack tuna (Katsuwonus pelamis) fishery in the Sri Lankan waters[D]. Busan: Pukyong National University, 2016: 19.
|
[30] |
ROUGERIE F, CHABANNE J. Relationship between tuna and salinity in Tahitian coastal waters[J]. TO-AN, 1983, 17: 12-13.
|
[31] |
杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1): 34-40.
|
[32] |
韩保平, 方海, 阮雯. 毛里塔尼亚海洋渔业概况[J]. 现代渔业信息, 2011, 26(4): 20-23.
|
[33] |
NEILL W H, CHANG R K, DIZON A E. Magnitude and ecological implications of thermal inertia in skipjack tuna, Katsuwonus pelamis (Linnaeus)[J]. Environ Biol Fish, 1976, 1: 61-80. doi: 10.1007/BF00761729
|
[34] |
GRANDE M, MURUA H, ZUDAIRE I, et al. Reproductive timing and reproductive capacity of the skipjack tuna (Katsuwonus pelamis) in the western Indian Ocean[J]. Fish Res, 2014, 156: 14-22. doi: 10.1016/j.fishres.2014.04.011
|
[35] |
MCBRIDE R S, SOMARAKIS S, FITZHUGH G R, et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies[J]. Fish Fish, 2015, 16(1): 23-57. doi: 10.1111/faf.12043
|
[36] |
FONTENEAU A, HALLIER J P. Fifty years of dart tag recoveries for tropical tuna: a global comparison of results for the western Pacific, eastern Pacific, Atlantic, and Indian Oceans[J]. Fish Res, 2015, 163: 7-22. doi: 10.1016/j.fishres.2014.03.022
|
[37] |
GRAHAM J B, DICKSON K A. Tuna comparative physiology[J]. J Exp Biol, 2004, 207(23): 4015-4024. doi: 10.1242/jeb.01267
|
[38] |
LOUKOS H, MONFRAY P, BOPP L, et al. Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results[J]. Fish Oceanogr, 2003, 12(4/5): 474-482.
|
[39] |
DONEY S C. The growing human footprint on coastal and open-ocean biogeochemistry[J]. Sci, 2010, 328(5985): 1512-1516. doi: 10.1126/science.1185198
|
[40] |
NAJJAR R G, PYKE C R, ADAMS M B, et al. Potential climate-change impacts on the Chesapeake Bay[J]. Estuar Coast Shelf S, 2010, 86(1): 1-20. doi: 10.1016/j.ecss.2009.09.026
|
[41] |
RABALAIS N N, TURNER R E, DÍAZ R J, et al. Global change and eutrophication of coastal waters[J]. ICES J Mar Sci, 2009, 66(7): 1528-1537. doi: 10.1093/icesjms/fsp047
|
[42] |
WHITEHEAD P G, WILBY R L, BATTARBEE R W, et al. A review of the potential impacts of climate change on surface water quality[J]. Hydrolog Sci J, 2009, 54(1): 101-123. doi: 10.1623/hysj.54.1.101
|
[43] |
DONEY S C, RUCKELSHAUS M, EMMETT DUFFY J, et al. Climate change impacts on marine ecosystems[J]. Annu Rev Mar Sci, 2012, 4: 11-37. doi: 10.1146/annurev-marine-041911-111611
|
[44] |
吴越, 沈建林, 黄洪亮, 等. 毛里塔尼亚头足类资源及渔业现状[J]. 渔业信息与战略, 2017, 32(3): 217-224.
|
[45] |
BLABER S, BLABER T. Factors affecting the distribution of juvenile estuarine and inshore fish[J]. J Fish Biol, 1980, 17(2): 143-162. doi: 10.1111/j.1095-8649.1980.tb02749.x
|
[46] |
胡奎伟, 朱国平, 王学昉, 等. 中西太平洋鲣鱼丰度的时空分布及其与表温的关系[J]. 海洋渔业, 2011, 33(4): 417-422.
|
[47] |
LEHODEY P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Prog Oceanogr, 2001, 49(1/2/3/4): 439-468.
|
[48] |
ERAUSKIN-EXTRAMIANA M, ARRIZABALAGA H, HOBDAY A J, et al. Large-scale distribution of tuna species in a warming ocean[J]. Global Change Biol, 2019, 25(6): 2043-2060. doi: 10.1111/gcb.14630
|
[49] |
ARRIZABALAGA H, DUFOUR F, KELL L, et al. Global habitat preferences of commercially valuable tuna[J]. Deep-Sea Res II, 2015, 113: 102-112. doi: 10.1016/j.dsr2.2014.07.001
|
[50] |
NIHIRA A. Studies on the behavioral ecology and physiology of migratory fish schools of skipjack tuna (Katsuwonus pelamis) in the oceanic frontal area [Japan][J]. Bulletin of Tohoku National Fisheries Research Institute (Japan), 1996, 58: 137-233.
|
[51] |
魏广恩, 陈新军. 不同环境模态下空间分辨率对北太平洋柔鱼CPUE标准化的影响[J]. 海洋科学, 2021, 45(4): 147-158.
|
[52] |
宋利明, 许回. 金枪鱼延绳钓渔获性能研究进展[J]. 中国水产科学, 2021, 28(7): 925-937.
|
1. |
郭敏,余定坤,李浙,刘涛,金杰锋,王玉玉. 极端干旱对鄱阳湖碟形湖水生植物群落的影响. 生态与农村环境学报. 2024(06): 790-798 .
![]() |