ZHANG Yanping, LE Jiahua, YAN Zhoufu. Research on aquaculture area distribution of tuna in South China Sea[J]. South China Fisheries Science, 2023, 19(5): 48-57. DOI: 10.12131/20230058
Citation: ZHANG Yanping, LE Jiahua, YAN Zhoufu. Research on aquaculture area distribution of tuna in South China Sea[J]. South China Fisheries Science, 2023, 19(5): 48-57. DOI: 10.12131/20230058

Research on aquaculture area distribution of tuna in South China Sea

More Information
  • Received Date: March 22, 2023
  • Revised Date: May 10, 2023
  • Accepted Date: June 05, 2023
  • Available Online: November 20, 2023
  • The South China Sea is an important distribution area of tuna, so it is important to carry out researches on potentially suitable areas for tuna aquaculture in that area. The main tuna species in the South China Sea are yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis), according to whose locations of occurrence and seven kinds of environmental data in that area, we used the Maximum Entropy (MaxEnt) Model to quantitatively evaluate the potential suitability indexes for their aquaculture. The results show that: 1) The face value of receiver operating characteristic curve of the model was greater than 0.84, indicating that the model is accurate and can be used to simulate the distribution of potentially suitable habitats for tuna. 2) Sea surface dissolved oxygen, sea surface temperature and sea benthic salinity were important environmental factors which affected the distribution of suitable habitats for yellowfin tuna and skipjack tuna in the South China Sea. The optimal sea surface dissolved oxygen, sea surface temperature and sea benthic salinity of yellowfin tuna were 201.52–242.68 mol·m−3, 1.96–32.61 ℃, 34.37‰–35.26‰, respectively, and those of skipjack tuna were 200.83–208.35 mol·m−3, 19.71–28.96 ℃, 34.30‰–35.26‰, respectively. 3) The distribution areas of yellowfin tuna were mainly concentrated in the Dongsha fishing ground, the middle Nansha fishing ground, and the northeast of the western and central Nansha fishing ground, while those of skipjack tuna were mainly concentrated in the western and central of the south Taiwan fishing ground and the Dongsha fishing ground.

  • [1]
    KAPETSKY J M, AGUILAR-MANJARREZ J, JENNESS J. A global assessment of offshore mariculture potential from a spatial perspective[J]. FAO Fish Aqua Tech Pap, 2013(549): I.
    [2]
    TROELL M, HALLING C, NEORI A, et al. Integrated mariculture: asking the right questions[J]. Aquaculture, 2003, 226(1/2/3/4): 69-90.
    [3]
    傅远佳, 严晓, 张芳, 等. 习近平同志关于向海经济的重要论述与实践研究[J]. 北部湾大学学报, 2022, 37(5): 76-83.
    [4]
    周猛, 李东萍. 远洋的馈赠: 金枪鱼[J]. 中国水产, 2022(12): 104-106. doi: 10.3969/j.issn.1002-6681.2022.12.zhongguosc202212041
    [5]
    张成林, 刘晃, 徐皓, 等. 日本金枪鱼养殖产业现状及对中国的启示[J]. 渔业现代化, 2021, 48(5): 10-17. doi: 10.3969/j.issn.1007-9580.2021.05.002
    [6]
    NATH S S, BOLTE J P, ROSS L G, et al. Applications of geographical information systems (GIS) for spatial decision support in aquaculture[J]. Aquac Eng, 2000, 23(1/2/3): 233-278.
    [7]
    OYINLOLA M A, REYGONDEAU G, WABNITZ C C C, et al. Global estimation of areas with suitable environmental conditions for mariculture species[J]. PLoS One, 2018, 13(1): e0191086. doi: 10.1371/journal.pone.0191086
    [8]
    RADIARTA I N, SAITOH S I, MIYAZONO A. GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan[J]. Aquaculture, 2008, 284(1/2/3/4): 127-135.
    [9]
    GUISAN A, ZIMMERMANN N E. Predictive habitat distribution models in ecology[J]. Ecol Model, 2000, 135(2): 147-186.
    [10]
    GENTRY R R, FROEHLICH H E, GRIMM D, et al. Mapping the global potential for marine aquaculture[J]. Nat Ecol Evol, 2017, 1(9): 1317-1324. doi: 10.1038/s41559-017-0257-9
    [11]
    FROEHLICH H E, GENTRY R R, HALPEM B S. Global change in marine aquaculture production potential under climate change[J]. Nat Ecol Evol, 2018, 2(11): 1745-1750. doi: 10.1038/s41559-018-0669-1
    [12]
    赵欣. 南海渔业资源开发利用的时空特征及其治理[J]. 世界地理研究, 2022, 31(4): 762-772. doi: 10.3969/j.issn.1004-9479.2022.04.20222006
    [13]
    张鹏, 杨吝, 张旭丰, 等. 南海金枪鱼和鸢乌贼资源开发现状及前景[J]. 南方水产, 2010, 6(1): 68-74.
    [14]
    PICHENS B A, CARROL R, SCHIRRIPA M J, et al. A systematic review of spatial habitat associations and modeling of marine fish distribution: a guide to predictors, methods, and knowledge gaps[J]. PLoS One, 2021, 16(5): e0251818. doi: 10.1371/journal.pone.0251818
    [15]
    樊伟, 沈新强, 林明森. 大西洋大眼金枪鱼渔场、资源及环境特征的研究[J]. 海洋学报(中文版), 2003(S2): 167-176.
    [16]
    宋利明, 陈新军, 许柳雄. 大西洋中部黄鳍金枪鱼的垂直分布与有关环境因子的关系[J]. 海洋与湖沼, 2004, 35(1): 64-68. doi: 10.3321/j.issn:0029-814X.2004.01.010
    [17]
    WEXLER J B, MARGULIES D, SCHOLE V P. Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae[J]. J Exp Mar Biol Ecol, 2011, 404(1/2): 63-72.
    [18]
    MUGO R, SAITOH S E I I, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fish Oceanogr, 2010, 19(5): 382-396. doi: 10.1111/j.1365-2419.2010.00552.x
    [19]
    杨胜龙, 张禹, 樊伟, 等. 热带印度洋大眼金枪鱼渔场时空分布与温跃层关系[J]. 中国水产科学, 2012, 19(4): 679-689.
    [20]
    纪世建, 周为峰, 王鲁民, 等. 南海及临近海域黄鳍金枪鱼渔场时空分布与海表温度的关系[J]. 海洋渔业, 2016, 38(1): 9-16. doi: 10.3969/j.issn.1004-2490.2016.01.002
    [21]
    王少琴, 许柳雄, 朱国平, 等. 中西太平洋金枪鱼围网的黄鳍金枪鱼CPUE时空分布及其与环境因子的关系[J]. 大连海洋大学学报, 2014, 29(3): 303-308. doi: 10.3969/J.ISSN.2095-1388.2014.03.022
    [22]
    NYAKARAHUKA L, AYEBARE S, MOSOMTAI G, et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda[J]. PLoS Curr, 2017, 9. DOI: 10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.
    [23]
    BROWN J L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[J]. Methods Ecol Evol, 2014, 5(7): 694-700. doi: 10.1111/2041-210X.12200
    [24]
    NAIMI B, ARAÚJO M B. SDM: a reproducible and extensible R platform for species distribution modelling[J]. Ecography, 2016, 39(4): 368-375. doi: 10.1111/ecog.01881
    [25]
    RANDIN C F, DIRNBÖCK T, DULLINGER S, et al. Are niche-based species distribution models transferable in space?[J]. J Biogeogr, 2006, 33(10): 1689-1703. doi: 10.1111/j.1365-2699.2006.01466.x
    [26]
    BEARD K, KIMBLE M, YUAN J, et al. A method for heterogeneous spatio-temporal data integration in support of marine aquaculture site selection[J]. J Mar Sci Eng, 2020, 8(2): 96. doi: 10.3390/jmse8020096
    [27]
    YU S E, DONG S L, ZHANG Z X, et al. Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea[J]. Mar Life Sci Technol, 2022, 4(3): 329-342. doi: 10.1007/s42995-022-00141-2
    [28]
    WILTSHIRE K H, TANNER J E. Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species[J]. Ecol Model, 2020, 429: 109071. doi: 10.1016/j.ecolmodel.2020.109071
    [29]
    FREEMAN O E. Impact of climate change on aquaculture and fisheries in Nigeria: a review[J]. Int J Multidiscip Re Dev, 2017, 4(1): 53-59.
    [30]
    MCKINDSEY C W, THETMEYER H, LANDR T, et al. Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture, 2006, 261(2): 451-462. doi: 10.1016/j.aquaculture.2006.06.044
    [31]
    南海所开展“金枪鱼野捕与驯养关键技术研究与应用示范”研究通过现场测试[EB/OL]. (2022-07-28)[2023-03-03]. http://www.scsfri.ac.cn/info/1003/23380.htm.
    [32]
    BROWN A R, LILLEY M, SHUTLER J, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries[J]. Rev Aquac, 2020, 12(3): 1663-1688.
    [33]
    KOVE W. Key factors influencing juvenile quality in mariculture: a review[J]. Isr J Aquac, 2003, 55(4): 283-297.
    [34]
    CHANG Y, LEE M A, LEE K T, et al. Adaptation of fisheries and mariculture management to extreme oceanic environmental changes and climate variability in Taiwan[J]. Mar Policy, 2013, 38: 476-482. doi: 10.1016/j.marpol.2012.08.002
    [35]
    NILSEN A, HAGEN Ø, JOHNSEN C A, et al. The importance of exercise: increased water velocity improves growth of Atlantic salmon in closed cages[J]. Aquaculture, 2019, 501: 537-546. doi: 10.1016/j.aquaculture.2018.09.057
    [36]
    MATEAR R J, HIRST A C, MCNEIL B I. Changes in dissolved oxygen in the Southern Ocean with climate change[J]. Geochem Geophys Geosyst, 2000, 1(11): 2000GC000086. doi: 10.1029/2000GC000086
    [37]
    GRIGORAKIS K, RIGOS G. Aquaculture effects on environmental and public welfare: the case of Mediterranean mariculture[J]. Chemosphere, 2011, 85(6): 899-919. doi: 10.1016/j.chemosphere.2011.07.015
    [38]
    LI H M, LI X M, LI Q, et al. Environmental response to long-term mariculture activities in the Weihai coastal area, China[J]. Sci Total Environ, 2017, 601: 22-31.
    [39]
    乐家华, 鲁洁, 乐章太. 日本金枪鱼养殖产业发展及其启示[J]. 中国渔业经济, 2021, 39(5): 103-111. doi: 10.3969/j.issn.1009-590X.2021.05.012
  • Related Articles

    [1]ZHANG Manyao, SHI Wenjing, GUI Feng, ZENG Xianmin, XU Kaida, ZHAO Sheng. Study of suitable habitats for Sepiella maindroni in Zhoushan sea areas based on MaxEnt model[J]. South China Fisheries Science, 2023, 19(5): 22-31. DOI: 10.12131/20230080
    [2]QIAN Jing, LI Jiajun, CHEN Zuozhi, MA Shengwei, ZHANG Peng, QIU Yongsong, CAI Yancong. An investigation of large-size light falling-net fishing vessels operating in South China Sea based on Beidou VMS data[J]. South China Fisheries Science, 2022, 18(6): 1-9. DOI: 10.12131/20220001
    [3]ZHOU Xingxing, FAN Jiangtao, YU Jie, XU Shannan, CAI Yancong, CHEN Zuozhi. Geostatistics-based study on spatial-temporal distribution of Auxis thazard in South China Sea[J]. South China Fisheries Science, 2022, 18(5): 153-159. DOI: 10.12131/20210327
    [4]GUO Yingxiang, YANG Liling, XU Youwei, FANG Yifei, WANG Meng, JIANG Jingzhe. Analysis of bacterial community and diversity in gill tissues of bony fishes in adjacent South China Sea[J]. South China Fisheries Science, 2022, 18(4): 44-53. DOI: 10.12131/20210247
    [5]LIU Yu, WANG Xuehui, DU Feiyan, LIU Bilin, ZHANG Peng, LIU Mengna, QIU Yongsong. Difference analysis of trace elements in statolith of Sthenoteuthis oualaniensis in South China Sea[J]. South China Fisheries Science, 2019, 15(5): 15-24. DOI: 10.12131/20190039
    [6]SU Yingjia, CHEN Guobao, ZHOU Yanbo, MA Shengwei, WU Qia'er. Assessment of impact of summer fishing moratorium in South China Sea during 2015−2017[J]. South China Fisheries Science, 2019, 15(2): 20-28. DOI: 10.12131/20180149
    [7]ZHANG Jun, QIU Yongsong, CHEN Zuozhi, ZHANG Peng, ZHANG Kui, FAN Jiangtao, CHEN Guobao, CAI Yancong, SUN Mingshuai. Advances in pelagic fishery resources survey and assessment in open South China Sea[J]. South China Fisheries Science, 2018, 14(6): 118-127. DOI: 10.12131/20180037
    [8]XU Liang, NING Jiajia, WANG Xuehui, XU Lei, LIU Yu, DU Hong, DU Feiyan. Effect of lipid removal on carbon and nitrogen isotopes of Sthenoeuthis oualaniensis from South China Sea[J]. South China Fisheries Science, 2018, 14(4): 88-93. DOI: 10.3969/j.issn.2095-0780.2018.04.011
    [9]YANG Bingzhong, YANG Lin, TAN Yongguang, YAN Lei, ZHANG Peng, LI Jie. Analysis of catch composition of two shrimp beam trawls in South China Sea[J]. South China Fisheries Science, 2017, 13(6): 115-122. DOI: 10.3969/j.issn.2095-0780.2017.06.014
    [10]ZHANG Peng, YANG Lin, ZHANG Xufeng, TANG Yongguang. The present status and prospect on exploitotion of tuna and squid fishery resources in South China Sea[J]. South China Fisheries Science, 2010, 6(1): 68-74. DOI: 10.3969/j.issn.1673-2227.2010.01.012
  • Cited by

    Periodical cited type(2)

    1. 李东旭,邹晓荣,周淑婷. 中太平洋黄鳍金枪鱼CPUE时空分布及其与环境因子的关系. 南方水产科学. 2024(04): 68-76 . 本站查看
    2. 孙海兰,吴玉军. 江西余干县水产养殖池塘改造与大水面渔业发展探索. 农业工程技术. 2023(31): 114+116 .

    Other cited types(1)

Catalog

    Recommendations
    Estimation on catches by guangxi fishing vessels in beibu gulf
    GONG Binhao et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network
    XU Bo et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Assessment of fishery resources in southern sea area of yintan marine ranching, guangxi province
    NIU Lulian et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Study on diurnal and nocturnal variation of fish resources in marine ranching by fixed-point monitoring based on acoustic technology
    CHENG Gao et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Retrospective analysis of major tuna production in the western and central pacific ocean
    ZHENG Linbin et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
    Analysis of the global tuna trade network and the change of china’s tuna trade pattern
    SONG Mengge et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2024
    Genetic diversity analysis of different geographic populations of black carp (mylopharyngodon piceus) based on whole genome snp markers
    Tang, Heping et al., AQUACULTURE, 2024
    Fishes of the upper rio paraná basin: diversity, biogeography and conservation
    Dagosta, Fernando Cesar Paiva et al., NEOTROPICAL ICHTHYOLOGY, 2024
    Identification of groundwater potential zones using geospatial technologies in meki catchment, ethiopia
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Groundwater quality and aquatic fauna of some wells and springs from meknes area (morocco)
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Powered by
    Article views (200) PDF downloads (41) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return