WU Zhi, LI Yuefei, ZHU Shuli, YANG Jiping, XIA Yuguo, LI Jie. Fish habitat suitability analysis of Dongta spawning ground of Pearl River based on fisheries acoustic survey[J]. South China Fisheries Science, 2023, 19(3): 11-18. DOI: 10.12131/20220283
Citation: WU Zhi, LI Yuefei, ZHU Shuli, YANG Jiping, XIA Yuguo, LI Jie. Fish habitat suitability analysis of Dongta spawning ground of Pearl River based on fisheries acoustic survey[J]. South China Fisheries Science, 2023, 19(3): 11-18. DOI: 10.12131/20220283

Fish habitat suitability analysis of Dongta spawning ground of Pearl River based on fisheries acoustic survey

More Information
  • Received Date: October 24, 2022
  • Revised Date: January 09, 2023
  • Accepted Date: February 05, 2023
  • Available Online: February 18, 2023
  • As the largest spawning ground, the Dongta spawning ground is an important habitat for many rare and unique fish in the Pearl River, playing an important role in maintaining the supplement and diversity of early fish resources in the middle and lower reaches of the Pearl River. In order to evaluate the fish habitat suitability, we selected the suitable habitat of fish by a hot spot analysis based on the acoustic data from 2016 to 2019. Taking the terrain factors (Water depth, slope and aspect) as habitat indicators to calculate the fitness index range of each factor, we established the habitat suitability index (HSI) model by using the geometric mean method and calculated the HSI value. It is showed that the fish density ranged from 0.009 to 0.057 ind·m−3 in Dongta spawning ground. In terms of time, the fish density had been decreasing year by year, but in terms of space, the overall autocorrelation of fish distribution was not strong, while the local autocorrelation was strong in some areas. For example, the area adjacent to the spawning ground sandbar had been a hot spot in three years, and the "cold spot area" appeared in the downstream of the Datengxia Water Project and Shizui Section. The most suitable water depth range was 5–8 m, the suitable slope range was 1.0°–1.5° (Micro-slope), and the suitable aspect range was 90°–180° (Southeast direction). The average HSI value was 0.31±0.22, ranging from 0.02 to 0.95, and the high value was obtained mainly on both sides of the sandbar of the Dongta spawning ground but scattered on both sides of the river, where might be potentially suitable habitat areas. The main channel was basically the area with low HSI values. The HSI model was verified based on the acoustic data in 2017, and the fish density and HSI showed a linear positive correlation, which indicates that the established model in this paper can be used to analyze and evaluate the habitat suitability of river fish.
  • [1]
    郑丙辉, 张远, 李英博. 辽河流域河流栖息地评价指标与评价方法研究[J]. 环境科学学报, 2007(6): 928-936.
    [2]
    赵进勇, 董哲仁, 孙东亚. 河流生物栖息地评估研究进展[J]. 科技导报, 2008, 26(17): 82-88. doi: 10.3321/j.issn:1000-7857.2008.17.014
    [3]
    易雨君, 侯传莹, 唐彩红, 等. 澜沧江中游河段中国结鱼栖息地模拟[J]. 水利水电技术, 2019, 50(5): 82-89.
    [4]
    YU L X, LIN J, CHEN D, et al. Ecological flow assessment to improve the spawning habitat for the four major species of carp of the Yangtze river: a study on habitat suitability based on ultrasonic telemetry[J]. Water, 2018, 10(5): 600. doi: 10.3390/w10050600
    [5]
    谢雨芳, 吴鹏, 刘永, 等. 珠江河口凤鲚的栖息地适宜性评价[J]. 南方水产科学, 2023, 19(1): 22-29.
    [6]
    WANG C Y, WEI Q W, KYNARD B, et al. Migrations and movements of adult Chinese sturgeon Acipenser sinensis in the Yangtze River, China[J]. J Fish Biol, 2012, 81(2): 696-713. doi: 10.1111/j.1095-8649.2012.03365.x
    [7]
    张辉. 葛洲坝下游中华鲟(Acipenser sinensis)产卵场地形分析[J]. 生态学报, 2007, 27(10): 3945-3955.
    [8]
    朱瑶. 大坝对鱼类栖息地的影响及评价方法述评[J]. 中国水利水电科学研究院学报, 2005, 3(2): 100-103.
    [9]
    柏海霞, 彭期冬, 李翀, 等. 长江四大家鱼产卵场地形及其自然繁殖水动力条件研究综述[J]. 中国水利水电科学研究院学报, 2014, 12(3): 249-257.
    [10]
    YI Y J, ZHANG S, WANG Z Y. The bedform morphology of Chinese sturgeon spawning sites in the Yangtze River[J]. Int J Sediment Res, 2013, 28(3): 421-429. doi: 10.1016/S1001-6279(13)60052-9
    [11]
    俞立雄. 长江中游四大家鱼典型产卵场地形及水动力特征研究[D]. 成都: 西南大学, 2018: 51-64.
    [12]
    BORLAND H, GILBY B, HENDERSON C, et al. Dredging fundamentally reshapes the ecological significance of 3D terrain features for fish in estuarine seascapes[J]. Landscape Ecol, 2022, 37(5): 1-16.
    [13]
    帅方敏, 李新辉, 李跃飞, 等. 珠江东塔产卵场鳙繁殖的生态水文需求[J]. 生态学报, 2016, 36(19): 1-8.
    [14]
    黎小正. 模糊综合评价广西桂平东塔鱼类产卵场水质状况[J]. 广西科学院学报, 2010, 26(3): 363-366.
    [15]
    帅方敏, 李新辉, 何安尤, 等. 珠江水系广西江段鱼类多样性空间分布特征[J]. 水生生物学报, 2020, 44(4): 819-828. doi: 10.7541/2020.098
    [16]
    张迎秋, 黄稻田, 李新辉, 等. 西江鱼类群落结构和环境影响分析[J]. 南方水产科学, 2020, 16(1): 42-52. doi: 10.12131/20190142
    [17]
    TAN X C, LL X H, LEL S, et al. Annual dynamics of the abundance of fish larvae and its relationship with hydrological variation in the Pearl River[J]. Environ Biol Fish, 2010, 88(3): 217-225. doi: 10.1007/s10641-010-9632-y
    [18]
    SHUAI F M, LI X H, LI Y F, et al. Temporal patterns of larval fish occurrence in a large subtropical river[J]. PLoS One, 2016, 11(1): e0146441. doi: 10.1371/journal.pone.0146441
    [19]
    庞雪松, 杜敬民, 假冬冬, 等. 西江长洲枢纽下游近坝段水位下降特征及调控措施[J]. 水利水运工程学报, 2014(3): 42-48. doi: 10.3969/j.issn.1009-640X.2014.03.007
    [20]
    李建. 三峡初期蓄水对典型鱼类栖息地适宜性的影响[J]. 水利学报, 2013, 44(8): 892-900.
    [21]
    谭细畅, 李新辉, 林建志, 等. 基于水声学探测的两个广东鲂产卵群体繁殖生态的差异性[J]. 生态学报, 2009, 29(4): 1756-1762.
    [22]
    FOOTE K, KNUDSEN H, VESTNES G, et al. Calibration of acoustic instruments for fish density estimation: a practical guide[J]. ICES Coop Res Rep, 1987, 144: 1-69.
    [23]
    杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性[J]. 生态学报, 2014, 34(13): 3771-3778.
    [24]
    BORLAND H P, GILBY B L, HENDERSON C J, et al. The influence of seafloor terrain on fish and fisheries: a global synthesis[J]. Fish Fish, 2021, 22(4): 707-734. doi: 10.1111/faf.12546
    [25]
    李翀. 长江上游保护区干流鱼类栖息地地貌及水文特征研究[D]. 北京: 中国水利水电科学研究院, 2013: 46-51.
    [26]
    MIRANDA L E, KILLGORE K J. Fish Depth distributions in the lower Mississippi River[J]. River Res Appl, 2014, 30(3): 347-359. doi: 10.1002/rra.2652
    [27]
    SHELDON A L. Species diversity and longitudinal succession in stream fishes[J]. Ecology, 1968, 49(2): 193-198. doi: 10.2307/1934447
    [28]
    ROBERTIS D A, HANDEGARD N O. Fish avoidance of research vessels and the efficacy of noise-reduced vessels: a review[J]. ICES J Mar Sci, 2013, 70(1): 34-45. doi: 10.1093/icesjms/fss155
    [29]
    WHEELAND L J, ROSE G A. Quantifying fish avoidance of small acoustic survey vessels in boreal lakes and reservoirs[J]. Ecol Freshw Fish, 2014, 24(1): 67-76.
    [30]
    童朝锋, 周云, 孟艳秋. 航道清礁对西江鱼类保护区紊流体的影响[J]. 水运工程, 2018(11): 138-144.
    [31]
    李慧峰, 曹坤, 汪登强, 等. 鄱阳湖通江水道越冬时期鱼类群落的栖息地适宜性分析[J]. 中国水产科学, 2022, 29(3): 341-354.
    [32]
    PETITGAS P, WOILLED M, DORAY M, et al. A geostatistical definition of hotspots for fish spatial distributions[J]. Math Geosci, 2016, 48(1): 65-77. doi: 10.1007/s11004-015-9592-z
    [33]
    NELSON T A, BOOTS B. Detecting spatial hot spots in landscape ecology[J]. Ecography, 2008, 31(5): 556-566. doi: 10.1111/j.0906-7590.2008.05548.x
    [34]
    李佳佳, 汪金涛, 陈新军, 等. 不同气候模态下西北太平洋柔鱼冬春生群资源时空分布变化研究[J]. 南方水产科学, 2020, 16(2): 62-69. doi: 10.12131/20190175
    [35]
    史慧敏, 樊伟, 张涵, 等. 基于渔船轨迹的阿根廷滑柔鱼捕捞强度空间分析[J]. 南方水产科学, 2021, 17(6): 1-11.
    [36]
    李斌, 郑宇辰, 徐丹丹, 等. 长江上游弥陀漫滩水体鱼类食物网动态的季节性变化[J]. 生态学报, 2023, 43(4): 1664-1675.
    [37]
    AMOROS C, BORNETTE G. Connectivity and biocomplexity in waterbodies of riverine floodplains[J]. Freshw Biol, 2002, 47(4): 761-776. doi: 10.1046/j.1365-2427.2002.00905.x
  • Cited by

    Periodical cited type(1)

    1. 阙祥尧,张桂芳,余建芳,吴子君,曹海鹏,安建,刘嵘. 黄尾鲴冬片高效生态培育试验. 江西水产科技. 2023(01): 7-9 .

    Other cited types(4)

Catalog

    Article views (331) PDF downloads (47) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return