PENG Zhanfei, SHEN Wei, ZHANG Jin. Study on error and correction model of fish length measurement based on imaging sonar[J]. South China Fisheries Science, 2023, 19(4): 31-40. DOI: 10.12131/20220279
Citation: PENG Zhanfei, SHEN Wei, ZHANG Jin. Study on error and correction model of fish length measurement based on imaging sonar[J]. South China Fisheries Science, 2023, 19(4): 31-40. DOI: 10.12131/20220279

Study on error and correction model of fish length measurement based on imaging sonar

More Information
  • Received Date: October 20, 2022
  • Revised Date: March 04, 2023
  • Accepted Date: March 30, 2023
  • Available Online: April 27, 2023
  • Imaging sonar can measure the length of fish images within its scanning beam. To improve the accuracy of imaging sonar's measurement of fish length, we conducted an experiment to determine the fish length by using Adaptive Resolution Imaging Sonar (ARIS). We compared and analyzed the fish length error in acoustic image based on the measured length of a trail fish and the image length at a known position of the ARIS scanning beam. The results indicate that the main influencing factor of fish image length measurement error was the angle between the fish and the sonar beam. As the angle increased, the measurement error of fish length decreased. There was no significant interactive effect of detection distance of ARIS on length measurement error of fish in the 4 M field. The error between the fish image length and the fork length was minimal, with an average error of 2.1 cm. Furthermore, the image length of fish had a good linear relationship with the total length and fork length, and the fitting degree R2 of the linear modified model was 0.995 1 and 0.990 5, respectively. The study shows that fish image length based on fork measurements is more effective. Additionally, the error analysis of the angle between fish and sonar beam on image length and the sonar image length modified model also provide preliminary references for obtaining more accurate fish length information.
  • [1]
    SIMMONDS J E, MACLENNAN D N. Fisheries acoustics: theory and practice: 2nd edn.[J]. Fish Fish, 2006, 7: 227-228. doi: 10.1111/j.1467-2979.2006.00220.x
    [2]
    TUSER M, FROUZOVA J, BALK H, et al. Evaluation of potential bias in observing fish with a DIDSON acoustic camera[J]. Fish Res, 2014, 155: 114-121. doi: 10.1016/j.fishres.2014.02.031
    [3]
    BELCHE E O, LYNN D C. Acoustic, near-video-quality image for work in turbid water[C]. The Proceedings of Underwater Intervention 2000 Conference, January 2000, Houston, Tex. Houston, Tex: Doyle Publishing Co. Inc, 2000.
    [4]
    BELCHER E, LYNN D, DINH H, et al. Beamforming and imaging with acoustic lenses in small, high-frequency sonars[C]//Proceedings OCEANS'99 MTS/IEEE Conference & Exhibition, 13–16 September 1999, Seattle, Washington. IEEE Oceanic Engineering Society, 1999, 3: 1495-1499.
    [5]
    ELLOTT J M, FLETCHER J M. A comparison of three methods for assessing the abundance of Arctic char, Salvelinus alpines Windermere (northwest England)[J]. Fish Res, 2001, 53(1): 39-46. doi: 10.1016/S0165-7836(00)00270-8
    [6]
    连玉喜, 黄耿, MALGORZATA G, 等. 基于水声学探测的香溪河鱼类资源时空分布特征评估[J]. 水生生物学报, 2015, 39(5): 920-929. doi: 10.7541/2015.121
    [7]
    刘慧杰, 王从锋, 刘德富, 等. 双频识别声呐在鱼类资源调查中的应用进展[J]. 三峡大学学报(自然科学版), 2015, 37(3): 28-34. doi: 10.13393/j.cnki.issn.1672-948X.2015.03.007
    [8]
    JECH M J, MICHAELS W L. A multifrequency method to classify and evaluate fisheries acoustic data[J]. Can J Fish Aquat, 2006, 63: 2225-2235. doi: 10.1139/f06-126
    [9]
    MAXWELL S L, GOVE N E. Assessing a dual-frequency identification sonars' fish-counting accuracy, precision, and turbid river range capability[J]. J Acoust Soc Am, 2007, 122(6): 3364-3377. doi: 10.1121/1.2799500
    [10]
    LUBIS M Z, MANIK H M. Review: acoustic systems (split beam echo sounder) to determine abundance of fish in marine fisheries[J]. J Geosci Eng Technol, 2017, 2(1): 76-83. doi: 10.24273/jgeet.2017.2.1.38
    [11]
    ZWOLINSKI J Z, FERNANDES P G F G, MARQUES V, et al. Estimating fish abundance from acoustic surveys: calculating variance due to acoustic backscatter and length distribution error[J]. Can J Fish Aquat, 2009, 66(12): 2081-2095. doi: 10.1139/F09-138
    [12]
    MOURSUND R A, CARLSON T J, PETERS R D. A fisheries application of a dual-frequency identification sonar acoustic camera[J]. ICES J Mar Sci, 2003, 60(3): 678-683. doi: 10.1016/S1054-3139(03)00036-5
    [13]
    LOZORI J D, MICHAELS B C. Sonar estimation of salmon passage in the Yukon River near pilot station, 2009[R]. Fairbanks: Alaska Department of Fish and Game, Division of Commercial Fisheries, 2013: 1-3.
    [14]
    JOHNSON E L, CLABOUGH T S, KEEFER M L, et al. Evaluation of dual frequency identification sonar (DIDSON) for monitoring Pacific Lamprey passage behavior at fishways of Bonneville Dam, 2011[R]. U. S. Army Corps of Engineers Portland District, Idaho Cooperative Fish and Wildlife Research Unit, 2012: 2-3.
    [15]
    荆丹翔, 周晗昀, 韩军, 等. 基于成像声呐DIDSON的水域内鱼群数量估计方法[J]. 应用声学, 2019, 38(4): 705-711. doi: 10.11684/j.issn.1000-310X.2019.04.030
    [16]
    HOLMES J A, CRONKITE G, ENZENHOFER H J, et al. Accuracy and precision of fish-count data from a 'dual-frequency identification sonar' (DIDSON) imaging system[J]. ICES J Mar Sci, 2006, 63(3): 543-555. doi: 10.1016/j.icesjms.2005.08.015
    [17]
    LIN D Q, ZHANG H, KANG M, et al. Measuring fish length and assessing behavior in a high-biodiversity reach of the Upper Yangtze River using an acoustic camera and echo sounder[J]. J Appl Ichthyol, 2016, 32(6): 1072-7079. doi: 10.1111/jai.13134
    [18]
    JING D X, HAN J, WANG X D, et al. A method to estimate the abundance of fish based on dual-frequency identification sonar (DIDSON) imaging[J]. Fish Sci, 2017, 83(5): 685-697. doi: 10.1007/s12562-017-1111-3
    [19]
    张翔, 沈蔚, 童剑锋, 等. 基于DIDSON双频识别声呐技术的青草沙水库鱼类资源量评估[J]. 上海海洋大学学报, 2017, 26(4): 561-569. doi: 10.12024/jsou.20161201919
    [20]
    徐兆礼, 沈盎绿. 兴化湾海域鱼类多样性的时空变化[J]. 中国水产科学, 2011, 19(2): 174-184.
    [21]
    CRONKITE G M W. Use of high-frequency imaging sonar to estimate adult sockeye salmon escapement in the Horsefly River, British Columbia[R]. Nanaimo, British Columbia: Fisheries and Oceans Canada, 2006.
    [22]
    BAUMGARTNER L J, REYNOLDSON N, CAMERON L, et al. Application of a Dual-frequency Identification Sonar (DIDSON) to fish migration studies[C]//Cutting-edge Technologies in Fish and Fisheries Science, 28-29 August, 2006, Hobart, Tasmania, Australia, Australian. Australian Society for Fish Biology, 2006, 84: 1-33.
    [23]
    CROSSMAN J A, MARTEL G, JOHNSON P N, et al. The use of dual frequency identification sonar (DIDSON) to document white sturgeon activity in the Columbia River, Canada[J]. J Appl Ichthyol, 2011, 27: 53-57.
    [24]
    NEUMANN R M, GUY C S, WILLIS D W. Length, weight, and associated structural indices[C]//ZALE A V, PARRISH D L, SUTTON T M. Fisheries techniques. Bethesda, Maryland: American Fisheries Society, 2012: 637-676.
    [25]
    SHIN Y J, ROCHET M J, JENNINGS S, et al. Using size-based indicators to evaluate the ecosystem effects of fishing[J]. ICES J Mar Sci, 2005, 62(3): 384-396. doi: 10.1016/j.icesjms.2005.01.004
    [26]
    BECKER A, WHITFIELD A K, COWLEY, et al. An assessment of the size structure, distribution and behavior of fish populations within a temporarily closed estuary using dual frequency identification sonar (DIDSON)[J]. J Fish Biol, 2011, 79(3): 761-775. doi: 10.1111/j.1095-8649.2011.03057.x
    [27]
    SCHRECK C B, MOYLE P B. Methods for fish biology[M]. Bethesda: American Fisheries Society, 1990: 363-387.
    [28]
    HIGHTOWER J E, MAGOWAN K J, BROWN L M, et al. Reliability of fish size estimates obtained from a multibeam imaging sonar[J]. J Fish Wildl Manag, 2013, 4(1): 86-96. doi: 10.3996/102011-JFWM-061
    [29]
    COOK D, MIDDLEMISS K, JAKSONS P, et al. Validation of fish length estimations from a high frequency multi-beam sonar (ARIS) and its utilization as a field-based measurement technique[J]. Fish Res, 2019, 218: 59-68. doi: 10.1016/j.fishres.2019.05.004
    [30]
    DAROUX A, MARTIGNAC F, NEVOUX M, et al. Manual fish length measurement accuracy for adult river fish using an acoustic camera (DIDSON)[J]. J Fish Biol, 2019, 95(2): 480-489. doi: 10.1111/jfb.13996
    [31]
    BURWEN D L, FLEISCHMAN S J, MILLER J D. Accuracy and precision of salmon length estimates taken from DIDSON sonar images[J]. Trans Am Fish Soc, 2010, 139(5): 1306-1314. doi: 10.1577/T09-173.1
    [32]
    GERLOTTO F, GEORGAKARAKOS S, ERIKSEN P. The application of multibeam sonar technology for quantitative estimates of fish density in shallow water acoustic surveys[J]. Aquat Living Resour, 2000, 13: 385-393. doi: 10.1016/S0990-7440(00)01055-X
    [33]
    BURWEN D L, NEALSON P A, FLISCHMAN S J, et al. The complexity of narrowband echo envelopes as a function of fish side-aspect angle[J]. ICES J Mar Sci, 2007, 64(5): 1066-1074. doi: 10.1093/icesjms/fsm074
    [34]
    柯森繁, 陈渴鑫, 罗佳, 等. 鲢顶流游泳速度与摆尾行为相关性分析[J]. 水产学报, 2017, 41(3): 401-406.
  • Related Articles

    [1]LU Junyi, JIANG Liyan, LONG Kai, WANG Tao, WU Zhengli, LI Yanhong. HcTLR1 involved in antimicrobial immune response by MyD88-NF-κB signaling pathway in Hyriopsis cumingii[J]. South China Fisheries Science, 2024, 20(6): 19-30. DOI: 10.12131/20240093
    [2]WEI Mingliang, ZHANG Zhiwei, ZHANG Zhiyong, LIN Zhijie, ZHU Fei, JIA Chaofeng, MENG Qian, XU Dafeng, ZHANG Caojin. Effects of cold stress on black porgy tissue injury and apoptosis gene expression[J]. South China Fisheries Science, 2022, 18(5): 110-117. DOI: 10.12131/20210372
    [3]LI Junwei, HU Ruiping, CHEN Suwen, GUO Yongjian, ZHU Changbo, LI Ting, XIE Xiaoyong, SU Jiaqi. Effects of low salinity pressure on biological tissue and immunity enzymes activities of Sipunculus nudus[J]. South China Fisheries Science, 2021, 17(4): 41-48. DOI: 10.12131/20210022
    [4]CHEN Jie, HE Yang, DAI Xuping, WANG Jun, QING Chuanjie, LI Rui. Histological observation and innate immune barrier study of head kidney of Pelteobagrus vachelli[J]. South China Fisheries Science, 2021, 17(1): 82-90. DOI: 10.12131/20200119
    [5]GE Wanyi, LEI Lina, JIANG Xinyu, LI Xia, SUN Zhaosheng, WANG Wei, GAO Qian. cDNA cloning and expression pattern analysis of b2m from spotted sea bass (Lateolabrax maculatus)[J]. South China Fisheries Science, 2020, 16(6): 47-56. DOI: 10.12131/20200031
    [6]LIU Qian, JIANG Shigui, QIU Lihua, HUANG Jianhua, ZHOU Falin, YANG Qibin, JIANG Song, YANG Lishi. Immune function and expression of Toll9 receptor gene from Penaeus monodon[J]. South China Fisheries Science, 2017, 13(5): 63-71. DOI: 10.3969/j.issn.2095-0780.2017.05.009
    [7]LIU Yujiao, ZHU Huaping, LU Maixin, LIU Zhigang, CAO Jianmeng, GAO Fengying, KE Xiaoli. Effect of salinity stress on expression of PRLⅠgenes from tilapia and their distribution in different tissues[J]. South China Fisheries Science, 2014, 10(6): 51-57. DOI: 10.3969/j.issn.2095-0780.2014.06.007
    [8]LI Wuhu, REN Chunhua, HU Chaoqun, JIANG Xiao, ZHONG Ming. cDNA cloning and tissue distribution of calmodulin from sea cucumber (Stichopus monotuberculatus)[J]. South China Fisheries Science, 2014, 10(5): 75-81. DOI: 10.3969/j.issn.2095-0780.2014.05.011
    [9]ZHANG Han, JIANG Jingzhe, HE Jian, GU Lu, WANG Jiangyong. Study on distribution of hemocyanin in different tissues of Haliotis diversicolor[J]. South China Fisheries Science, 2014, 10(4): 34-38. DOI: 10.3969/j.issn.2095-0780.2014.04.006
    [10]PAN Liling, HUANG Guiju, CHENG Shuying, WANG Xiaoning, YU Dahui. cDNA cloning, characterization and challenge-based expression profiles of cathepsin D in winged pearl oyster Pteria penguin[J]. South China Fisheries Science, 2012, 8(2): 22-29. DOI: 10.3969/j.issn.2095-0780.2012.02.004
  • Cited by

    Periodical cited type(3)

    1. 王斌,王昊,刘智健,曹子良,杨丹杰,王芳. 养殖网箱锚泊系统结构设计与性能分析研究进展. 上海海洋大学学报. 2025(01): 176-187 .
    2. 吴皓,周松,刘强,王凯,严俊. 半潜式网箱系泊系统数值计算研究. 船舶力学. 2025(02): 200-208 .
    3. 段若衡,李梦阳,杜金宇. 42m双渔船并列系泊受力可靠性试验分析. 渔业现代化. 2023(02): 85-93 .

    Other cited types(5)

Catalog

    Article views (243) PDF downloads (39) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return