PENG Zhanfei, SHEN Wei, ZHANG Jin. Study on error and correction model of fish length measurement based on imaging sonar[J]. South China Fisheries Science, 2023, 19(4): 31-40. DOI: 10.12131/20220279
Citation: PENG Zhanfei, SHEN Wei, ZHANG Jin. Study on error and correction model of fish length measurement based on imaging sonar[J]. South China Fisheries Science, 2023, 19(4): 31-40. DOI: 10.12131/20220279

Study on error and correction model of fish length measurement based on imaging sonar

More Information
  • Received Date: October 20, 2022
  • Revised Date: March 04, 2023
  • Accepted Date: March 30, 2023
  • Available Online: April 27, 2023
  • Imaging sonar can measure the length of fish images within its scanning beam. To improve the accuracy of imaging sonar's measurement of fish length, we conducted an experiment to determine the fish length by using Adaptive Resolution Imaging Sonar (ARIS). We compared and analyzed the fish length error in acoustic image based on the measured length of a trail fish and the image length at a known position of the ARIS scanning beam. The results indicate that the main influencing factor of fish image length measurement error was the angle between the fish and the sonar beam. As the angle increased, the measurement error of fish length decreased. There was no significant interactive effect of detection distance of ARIS on length measurement error of fish in the 4 M field. The error between the fish image length and the fork length was minimal, with an average error of 2.1 cm. Furthermore, the image length of fish had a good linear relationship with the total length and fork length, and the fitting degree R2 of the linear modified model was 0.995 1 and 0.990 5, respectively. The study shows that fish image length based on fork measurements is more effective. Additionally, the error analysis of the angle between fish and sonar beam on image length and the sonar image length modified model also provide preliminary references for obtaining more accurate fish length information.
  • [1]
    SIMMONDS J E, MACLENNAN D N. Fisheries acoustics: theory and practice: 2nd edn.[J]. Fish Fish, 2006, 7: 227-228. doi: 10.1111/j.1467-2979.2006.00220.x
    [2]
    TUSER M, FROUZOVA J, BALK H, et al. Evaluation of potential bias in observing fish with a DIDSON acoustic camera[J]. Fish Res, 2014, 155: 114-121. doi: 10.1016/j.fishres.2014.02.031
    [3]
    BELCHE E O, LYNN D C. Acoustic, near-video-quality image for work in turbid water[C]. The Proceedings of Underwater Intervention 2000 Conference, January 2000, Houston, Tex. Houston, Tex: Doyle Publishing Co. Inc, 2000.
    [4]
    BELCHER E, LYNN D, DINH H, et al. Beamforming and imaging with acoustic lenses in small, high-frequency sonars[C]//Proceedings OCEANS'99 MTS/IEEE Conference & Exhibition, 13–16 September 1999, Seattle, Washington. IEEE Oceanic Engineering Society, 1999, 3: 1495-1499.
    [5]
    ELLOTT J M, FLETCHER J M. A comparison of three methods for assessing the abundance of Arctic char, Salvelinus alpines Windermere (northwest England)[J]. Fish Res, 2001, 53(1): 39-46. doi: 10.1016/S0165-7836(00)00270-8
    [6]
    连玉喜, 黄耿, MALGORZATA G, 等. 基于水声学探测的香溪河鱼类资源时空分布特征评估[J]. 水生生物学报, 2015, 39(5): 920-929. doi: 10.7541/2015.121
    [7]
    刘慧杰, 王从锋, 刘德富, 等. 双频识别声呐在鱼类资源调查中的应用进展[J]. 三峡大学学报(自然科学版), 2015, 37(3): 28-34. doi: 10.13393/j.cnki.issn.1672-948X.2015.03.007
    [8]
    JECH M J, MICHAELS W L. A multifrequency method to classify and evaluate fisheries acoustic data[J]. Can J Fish Aquat, 2006, 63: 2225-2235. doi: 10.1139/f06-126
    [9]
    MAXWELL S L, GOVE N E. Assessing a dual-frequency identification sonars' fish-counting accuracy, precision, and turbid river range capability[J]. J Acoust Soc Am, 2007, 122(6): 3364-3377. doi: 10.1121/1.2799500
    [10]
    LUBIS M Z, MANIK H M. Review: acoustic systems (split beam echo sounder) to determine abundance of fish in marine fisheries[J]. J Geosci Eng Technol, 2017, 2(1): 76-83. doi: 10.24273/jgeet.2017.2.1.38
    [11]
    ZWOLINSKI J Z, FERNANDES P G F G, MARQUES V, et al. Estimating fish abundance from acoustic surveys: calculating variance due to acoustic backscatter and length distribution error[J]. Can J Fish Aquat, 2009, 66(12): 2081-2095. doi: 10.1139/F09-138
    [12]
    MOURSUND R A, CARLSON T J, PETERS R D. A fisheries application of a dual-frequency identification sonar acoustic camera[J]. ICES J Mar Sci, 2003, 60(3): 678-683. doi: 10.1016/S1054-3139(03)00036-5
    [13]
    LOZORI J D, MICHAELS B C. Sonar estimation of salmon passage in the Yukon River near pilot station, 2009[R]. Fairbanks: Alaska Department of Fish and Game, Division of Commercial Fisheries, 2013: 1-3.
    [14]
    JOHNSON E L, CLABOUGH T S, KEEFER M L, et al. Evaluation of dual frequency identification sonar (DIDSON) for monitoring Pacific Lamprey passage behavior at fishways of Bonneville Dam, 2011[R]. U. S. Army Corps of Engineers Portland District, Idaho Cooperative Fish and Wildlife Research Unit, 2012: 2-3.
    [15]
    荆丹翔, 周晗昀, 韩军, 等. 基于成像声呐DIDSON的水域内鱼群数量估计方法[J]. 应用声学, 2019, 38(4): 705-711. doi: 10.11684/j.issn.1000-310X.2019.04.030
    [16]
    HOLMES J A, CRONKITE G, ENZENHOFER H J, et al. Accuracy and precision of fish-count data from a 'dual-frequency identification sonar' (DIDSON) imaging system[J]. ICES J Mar Sci, 2006, 63(3): 543-555. doi: 10.1016/j.icesjms.2005.08.015
    [17]
    LIN D Q, ZHANG H, KANG M, et al. Measuring fish length and assessing behavior in a high-biodiversity reach of the Upper Yangtze River using an acoustic camera and echo sounder[J]. J Appl Ichthyol, 2016, 32(6): 1072-7079. doi: 10.1111/jai.13134
    [18]
    JING D X, HAN J, WANG X D, et al. A method to estimate the abundance of fish based on dual-frequency identification sonar (DIDSON) imaging[J]. Fish Sci, 2017, 83(5): 685-697. doi: 10.1007/s12562-017-1111-3
    [19]
    张翔, 沈蔚, 童剑锋, 等. 基于DIDSON双频识别声呐技术的青草沙水库鱼类资源量评估[J]. 上海海洋大学学报, 2017, 26(4): 561-569. doi: 10.12024/jsou.20161201919
    [20]
    徐兆礼, 沈盎绿. 兴化湾海域鱼类多样性的时空变化[J]. 中国水产科学, 2011, 19(2): 174-184.
    [21]
    CRONKITE G M W. Use of high-frequency imaging sonar to estimate adult sockeye salmon escapement in the Horsefly River, British Columbia[R]. Nanaimo, British Columbia: Fisheries and Oceans Canada, 2006.
    [22]
    BAUMGARTNER L J, REYNOLDSON N, CAMERON L, et al. Application of a Dual-frequency Identification Sonar (DIDSON) to fish migration studies[C]//Cutting-edge Technologies in Fish and Fisheries Science, 28-29 August, 2006, Hobart, Tasmania, Australia, Australian. Australian Society for Fish Biology, 2006, 84: 1-33.
    [23]
    CROSSMAN J A, MARTEL G, JOHNSON P N, et al. The use of dual frequency identification sonar (DIDSON) to document white sturgeon activity in the Columbia River, Canada[J]. J Appl Ichthyol, 2011, 27: 53-57.
    [24]
    NEUMANN R M, GUY C S, WILLIS D W. Length, weight, and associated structural indices[C]//ZALE A V, PARRISH D L, SUTTON T M. Fisheries techniques. Bethesda, Maryland: American Fisheries Society, 2012: 637-676.
    [25]
    SHIN Y J, ROCHET M J, JENNINGS S, et al. Using size-based indicators to evaluate the ecosystem effects of fishing[J]. ICES J Mar Sci, 2005, 62(3): 384-396. doi: 10.1016/j.icesjms.2005.01.004
    [26]
    BECKER A, WHITFIELD A K, COWLEY, et al. An assessment of the size structure, distribution and behavior of fish populations within a temporarily closed estuary using dual frequency identification sonar (DIDSON)[J]. J Fish Biol, 2011, 79(3): 761-775. doi: 10.1111/j.1095-8649.2011.03057.x
    [27]
    SCHRECK C B, MOYLE P B. Methods for fish biology[M]. Bethesda: American Fisheries Society, 1990: 363-387.
    [28]
    HIGHTOWER J E, MAGOWAN K J, BROWN L M, et al. Reliability of fish size estimates obtained from a multibeam imaging sonar[J]. J Fish Wildl Manag, 2013, 4(1): 86-96. doi: 10.3996/102011-JFWM-061
    [29]
    COOK D, MIDDLEMISS K, JAKSONS P, et al. Validation of fish length estimations from a high frequency multi-beam sonar (ARIS) and its utilization as a field-based measurement technique[J]. Fish Res, 2019, 218: 59-68. doi: 10.1016/j.fishres.2019.05.004
    [30]
    DAROUX A, MARTIGNAC F, NEVOUX M, et al. Manual fish length measurement accuracy for adult river fish using an acoustic camera (DIDSON)[J]. J Fish Biol, 2019, 95(2): 480-489. doi: 10.1111/jfb.13996
    [31]
    BURWEN D L, FLEISCHMAN S J, MILLER J D. Accuracy and precision of salmon length estimates taken from DIDSON sonar images[J]. Trans Am Fish Soc, 2010, 139(5): 1306-1314. doi: 10.1577/T09-173.1
    [32]
    GERLOTTO F, GEORGAKARAKOS S, ERIKSEN P. The application of multibeam sonar technology for quantitative estimates of fish density in shallow water acoustic surveys[J]. Aquat Living Resour, 2000, 13: 385-393. doi: 10.1016/S0990-7440(00)01055-X
    [33]
    BURWEN D L, NEALSON P A, FLISCHMAN S J, et al. The complexity of narrowband echo envelopes as a function of fish side-aspect angle[J]. ICES J Mar Sci, 2007, 64(5): 1066-1074. doi: 10.1093/icesjms/fsm074
    [34]
    柯森繁, 陈渴鑫, 罗佳, 等. 鲢顶流游泳速度与摆尾行为相关性分析[J]. 水产学报, 2017, 41(3): 401-406.
  • Cited by

    Periodical cited type(29)

    1. 罗金萍,刘培敏,高权新. 罗氏沼虾良种选育研究进展. 生物资源. 2023(01): 16-27 .
    2. 庄振俊,唐美君,张冬冬,陈文彬,罗明,成永旭,吴旭干,陈晓武. 中华绒螯蟹“长荡湖1号”连续3个世代的遗传多样性分析. 水生生物学报. 2023(09): 1523-1533 .
    3. 邹利,王金龙,李传武,王冬武,曾春芳,刘明求,刘丽,谢敏,曾鸣. 稻田适养品种呆鲤的遗传多样性分析. 水产科学. 2023(05): 795-804 .
    4. 李喜莲,顾志敏,慎佩晶,徐洋,张宇飞,高强,程海华,陈雪峰. 基于RNA-seq技术的罗氏沼虾(Macrobrachium rosenbergii)不同组织转录组比较分析. 海洋与湖沼. 2021(01): 231-241 .
    5. 林明辉,朱华平,苏换换,樊佳佳,池金泉,马冬梅. 3个尖塘鳢引进群体繁育后代的遗传多样性分析. 南方农业学报. 2021(01): 213-220 .
    6. 许珊华,章嘉淇,卢婷,符圆,唐潇,唐琼英,夏正龙,蔡缪荧,高权新,李景芬,杨国梁. 基于微卫星标记的不同种质资源罗氏沼虾遗传多样性研究. 江苏农业科学. 2021(06): 45-51 .
    7. 唐芳,温贝妮,刘红. 不同凡纳滨对虾养殖群体的微卫星遗传多样性分析. 南方农业学报. 2021(04): 1108-1115 .
    8. 苏钰玲,李敏,杨永春,刘佳豪,李振海,阮惠婷,戴嘉格,刘丽,邹柯姝. 南方拟微卫星标记筛选及遗传多样性分析. 水产科学. 2020(02): 224-233 .
    9. 周晓敏,戴习林. 罗氏沼虾SNP标记筛选及不同群体的遗传多样性. 水产学报. 2020(08): 1249-1263 .
    10. 唐琼英,谢巨洪,夏正龙,蔡缪荧,吴云明,白鹿淮,杜厚宽,李景芬,杨国梁. 罗氏沼虾不同育种群体遗传多样性研究. 水生生物学报. 2020(05): 1097-1104 .
    11. 李景芬,夏正龙,栾生,蔡缪荧,罗坤,唐琼英,高权新,孔杰,杨国梁. 五个罗氏沼虾群体遗传多样性的微卫星分析. 水生生物学报. 2020(06): 1208-1214 .
    12. 申淑慧,戴习林. 基于生长和抗逆功能基因SNP分子标记的凡纳滨对虾野生及选育群体遗传多样性分析. 南方农业学报. 2020(11): 2836-2845 .
    13. 王林龙,张秀梅,王展,宋娜,高天翔. 青岛近岸金乌贼繁殖群体形态特征及遗传分化. 中国水产科学. 2019(02): 342-352 .
    14. 孙成飞,谢汶峰,胡婕,董浚键,田园园,吴灶和,叶星. 大口黑鲈3个养殖群体的遗传多样性分析. 南方水产科学. 2019(02): 64-71 . 本站查看
    15. 吕敏,黄光华,李旻,杨琼,卢小花,甘晖,阮志德,黄立斌,杨彦豪,卢天和,马华威. 异型雄性罗氏沼虾遗传多样性的微卫星分析. 水产科学. 2019(03): 355-360 .
    16. 段永楠,刘奕,胡隐昌,刘超,宋红梅,汪学杰,孙金辉,牟希东. 美丽硬仆骨舌鱼全基因组微卫星分布规律特征. 中国农学通报. 2019(23): 152-158 .
    17. 赵彦花,区又君,温久福,李加儿,周慧. 基于微卫星标记的黄唇鱼遗传多样性研究. 南方水产科学. 2019(04): 127-132 . 本站查看
    18. 樊佳佳,白俊杰,李胜杰,马冬梅,姜鹏. 驯食配合饲料的大口黑鲈3个选育世代的遗传多样性分析. 渔业科学进展. 2019(04): 57-64 .
    19. 赵彦花,区又君,温久福,李加儿,周慧. 基于转录组测序技术的黄唇鱼SSR分子标记筛选. 南方农业学报. 2019(09): 2078-2087 .
    20. 宋丹丹,王龙,魏红静,史文竞,朱传坤. 克氏原螯虾微卫星文库构建及多态性分析. 水产科学. 2019(06): 819-826 .
    21. 陈静,宋光同,何吉祥,黄龙,吴本丽,汪翔,武松. 安徽省10个日本沼虾群体遗传多样性微卫星分析. 淡水渔业. 2018(03): 7-12 .
    22. 王传聪,唐修阳,项杰,欧江涛. 罗氏沼虾转录组SSR标记信息分析. 江苏农业科学. 2018(22): 56-59 .
    23. Zhu Bing,Fan Jiajia,Bai Junjie,Jiang Peng. Comparative Analysis of Microsatellite DNA Polymorphism in Gold Grass Carp and Four Grass Carp Populations from China. Animal Husbandry and Feed Science. 2017(06): 379-383+397 .
    24. 袁锐,张朝晖,陈辉,方苹,陈静,刘训猛,吴亚锋,王晶晶. 罗氏沼虾“铁壳”现象及其防控研究进展. 水产科学. 2017(03): 383-390 .
    25. 陈静,何吉祥,黄龙,吴本丽,孙和权,宋光同,陈贵生,王晓健. 3个中华鳖群体遗传多样性的微卫星标记分析. 广东农业科学. 2017(07): 141-146 .
    26. 武小斌,穆淑梅,赵玲玉,康现江,薛建民. 日本沼虾(Macrobrachium nipponense)4个野生群体遗传多样性微卫星分析. 河北大学学报(自然科学版). 2017(02): 161-168 .
    27. 朱冰,樊佳佳,白俊杰,姜鹏. 金草鱼与中国4个草鱼群体的微卫星多态性比较分析. 南方水产科学. 2017(02): 51-58 . 本站查看
    28. 刘磊,彭士明,高权新,张晨捷,施兆鸿. 基于银鲳RNA-seq数据中SSR标记的信息分析. 安徽农业科学. 2016(28): 102-105 .
    29. 钟丹丹,林勇,宾石玉,余艳玲,陈忠,曾兰,杜雪松,张永德. 两个罗氏沼虾种群的遗传多样性研究. 广东农业科学. 2015(24): 140-145 .

    Other cited types(17)

Catalog

    Article views (250) PDF downloads (40) Cited by(46)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return