HUO Yumei, HU Xiao, WU Yanyan, JIANG Jinjin. Preparation, separation and physicochemical properties of α-glucosidase inhibitory peptides from Miichthys miiuy[J]. South China Fisheries Science, 2023, 19(3): 98-109. DOI: 10.12131/20220269
Citation: HUO Yumei, HU Xiao, WU Yanyan, JIANG Jinjin. Preparation, separation and physicochemical properties of α-glucosidase inhibitory peptides from Miichthys miiuy[J]. South China Fisheries Science, 2023, 19(3): 98-109. DOI: 10.12131/20220269

Preparation, separation and physicochemical properties of α-glucosidase inhibitory peptides from Miichthys miiuy

More Information
  • Received Date: October 10, 2022
  • Revised Date: December 18, 2022
  • Accepted Date: December 21, 2022
  • Available Online: December 26, 2022
  • In order to achieve the high-value utilization of Miichthys miiuy processing by-products, taking α-glucosidase inhibition rate as an index, we carried out a single factor experiment and applied the response surface methodology to optimize the preparation process of α-glucosidase inhibitory peptides from minced fish muscle of M. miiuy processing by-products. The optimal enzymatic hydrolysis conditions with trypsin were as follows: hydrolysis time 4.8 h, enzyme dosage 0.21%, hydrolysis pH 8.5, material-liquid ratio 1∶2 (m/V), hydrolysis temperature 46 ℃. On this basis, we analyzed the inhibitory activity of the enzymatic hydrolysates before and after the simulated gastrointestinal digestion in vitro, and drew the kinetic curve of enzyme inhibition. Then we separated the enzymatic hydrolysate by SephadexG-25 so as to investigate the molecular weight distribution and amino acid composition of the enzymatic hydrolysates. The results show that the α-glucosidase inhibitory rate increased to 61.79% after that the α-glucosidase inhibitory peptide was simulated gastrointestinal digestion in vitro. Its inhibition type on α-glucosidase was mixed type inhibition. The molecular mass of the enzymatic hydrolysate was concentrated below 3 kD, accounting for 91.85%. After the separation by G-25, the α-glucosidase inhibition rate of F4 fraction was 58.05%. In Group F4, 78.28% of peptides were less than 1 kD. The amino acid analysis shows that the enzymatic hydrolysate was rich in Asp, Glu, Arg, Tyr, Val, Ala, Leu and Lys.
  • [1]
    ZENG Z, LUO J Y, ZUO F L, et al. Screening for potential novel probiotic Lactobacillus strains based on high dipeptidyl peptidase IV and α-glucosidase inhibitory activity[J]. J Funct Foods, 2016, 20: 486-495.
    [2]
    UJIROGHENE O J, LIU L, ZHANG S W, et al. α-glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei[J]. Food Chem, 2019, 299: 124985. doi: 10.1016/j.foodchem.2019.124985
    [3]
    VALENCIA-MEJIA E, BATISTA K A, FERNANDEZ J J A, et al. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.)[J]. Food Res Int, 2019, 121: 238-246. doi: 10.1016/j.foodres.2019.03.043
    [4]
    REN Y, LIANG K, JIN Y Q, et al. Identification and characterization of two novel α-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L.) seed protein[J]. J Funct Foods, 2016, 26: 439-450. doi: 10.1016/j.jff.2016.07.024
    [5]
    VILCACUNDO R, MARTINEZ-VILLALUENGA C, HERNANDEZ-LEDESMA B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion[J]. J Funct Foods, 2017, 35: 531-539. doi: 10.1016/j.jff.2017.06.024
    [6]
    董宇婷, 王荣春. 降糖肽的发展现状及研究进展[J]. 生物信息学, 2018, 16(2): 83-89.
    [7]
    郎蒙, 蒋蔚薇, 孙慧敏, 等. 响应面优化南极磷虾粉肽制备工艺及α-葡萄糖苷酶抑制活性分析[J]. 上海海洋大学学报, 2022, 31(2): 564-573.
    [8]
    林海生, 廖津, 章超桦, 等. 华贵栉孔扇贝酶法制备α-葡萄糖苷酶抑制肽工艺优化[J]. 广东海洋大学学报, 2020, 40(5): 97-104.
    [9]
    GU X, GAO T, HOU Y K, et al. Identification and characterization of two novel α-glucosidase inhibitory peptides from almond (Armeniaca sibirica) oil manufacture residue[J]. LWT, 2020, 134: 110215. doi: 10.1016/j.lwt.2020.110215
    [10]
    黄钦钦, 田亚平. 条斑紫菜蛋白酶解液α-葡萄糖苷酶和DPP-IV抑制活性的表征及肽成分解析[J]. 食品科学, 2020, 41(24): 110-116.
    [11]
    孙素玲, 李雪, 顾小红, 等. 鮸鱼肌肉和副产物营养组成分析及评价[J]. 食品与机械, 2020, 36(7): 45-49.
    [12]
    户江. 鱼提取物对鲜红虾保鲜效果的研究[J]. 农村经济与科技, 2017, 28(7): 70-72.
    [13]
    李庆玲, 霍健聪, 邓尚贵. 响应面法优化鮸鱼鱼松的加工工艺[J]. 食品工业, 2015, 36(6): 101-104.
    [14]
    葛雪筠, 周德健, 王斌, 等. 鮸鱼鱼鳔多糖对四氯化碳引起的急性肝损伤的保护作用[J]. 中国海洋大学学报(自然科学版), 2018, 48(9): 74-79, 139.
    [15]
    ZHAO W H, LUO Q B, PAN X, et al. Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy)[J]. J Funct Foods, 2018, 47: 503-511. doi: 10.1016/j.jff.2018.06.014
    [16]
    HE Y, PAN X, CHI C F, et al. Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: preparation, identification, and antioxidant activity evaluation[J]. LWT, 2019, 105: 1-8. doi: 10.1016/j.lwt.2019.01.054
    [17]
    HARNEDY P A, PARTHSARATHY V, MCLAUGHLIN C M, et al. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: a source of antidiabetic peptides[J]. Food Res Int, 2018, 106: 598-606. doi: 10.1016/j.foodres.2018.01.025
    [18]
    THEYSGEUR S, CUDENNEC B, DERACINOIS B, et al. New bioactive peptides identified from a tilapia byproduct hydrolysate exerting effects on DPP-IV activity and intestinal hormones regulation after canine gastrointestinal simulated digestion[J]. Molecules, 2021, 26(1): 136-153.
    [19]
    侯梦凡, 胡晓, 杨贤庆, 等. 卵形鲳鲹黄嘌呤氧化酶抑制肽的制备及其工艺优化[J]. 食品与发酵工业, 2021, 47(23): 185-192.
    [20]
    张玉, 王伟, 张一帆, 等. 响应面法优化蚕蛹蛋白源α-葡萄糖苷酶抑制肽酶解条件[J]. 中国食品学报, 2016, 16(4): 137-144.
    [21]
    赵谋明, 马梅, 苏国万, 等. 具有醒酒活性的玉米肽的制备、富集和鉴定[J]. 中国食品学报, 2020, 20(9): 86-94. doi: 10.16429/j.1009-7848.2020.09.011
    [22]
    陈宏, 章骞, 陈玉磊, 等. 利用牡蛎制备DPP-Ⅳ抑制肽及其活性分析[J]. 食品科学, 2021, 42(10): 120-126.
    [23]
    郑惠娜, 周春霞, 陈志成, 等. 胰酶酶解珍珠贝分离蛋白制备低苯丙氨酸寡肽制品[J]. 食品工业科技, 2016, 37(8): 215-218, 224.
    [24]
    唐志红, 余良, 贺晓丽, 等. 酶解小龙虾副产物蛋白制备α-葡萄糖苷酶抑制肽的研究[J]. 食品科技, 2021, 46(11): 23-27.
    [25]
    于丽娜, 杜德红, 张初署, 等. 响应面法优化微波辅助酶解制备α-葡萄糖苷酶抑制活性肽工艺[J]. 食品工业科技, 2018, 39(4): 117-122, 136.
    [26]
    胡旭阳, 李维, 孔祥东, 等. 响应面法优化日本黄姑鱼鱼肉免疫活性肽的提取工艺[J]. 食品工业科技, 2019, 40(17): 173-178.
    [27]
    包美丽, 杨添植, 张立钢, 等. 双酶法制备马鹿茸降血糖肽工艺优化及其对α-葡萄糖苷酶的抑制效果[J]. 食品科学, 2017, 38(6): 88-95.
    [28]
    李艳敏, 郁书怀, 仝艳军, 等. 裙带菜α-葡萄糖苷酶抑制活性肽的制备[J]. 食品工业科技, 2020, 41(20): 127-134.
    [29]
    李佳芸, 王欣之, 韦源青, 等. 马氏珍珠贝软体酶法制备降糖肽的工艺优化及肽段分析[J]. 食品工业科技, 2021, 42(22): 202-211.
    [30]
    SHARMA S, PRADHAN R, MANICKAVASAGAN A, et al. Production of antioxidative protein hydrolysates from corn distillers solubles: process optimization, antioxidant activity evaluation, and peptide analysis[J]. Ind Crop Prod, 2022, 184: 115107. doi: 10.1016/j.indcrop.2022.115107
    [31]
    肖婷, 裘乐芸, 王瑞艳, 等. 甲鱼蛋α-葡萄糖苷酶抑制肽及其纳米运载体的体外胃肠消化特性[J]. 食品科学, 2022, 43(12): 114-121.
    [32]
    JIN R, TENG X Y, SHANG J Q, et al. Identification of novel DPP-IV inhibitory peptides from Atlantic salmon (Salmo salar) skin[J]. Food Res Int, 2020, 133: 109161. doi: 10.1016/j.foodres.2020.109161
    [33]
    LIU L L, CHEN J W, LI X. Novel peptides with α-glucosidase inhibitory activity from Changii radix hydrolysates[J]. Process Biochem, 2021, 111: 200-206. doi: 10.1016/j.procbio.2021.08.019
    [34]
    WEI G Q, ZHAO Q, WANG D D, et al. Novel ACE inhibitory, antioxidant and α-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking[J]. LWT, 2022, 159: 113196. doi: 10.1016/j.lwt.2022.113196
    [35]
    ZHAO Q, WEI G Q, LI K L, et al. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein[J]. LWT, 2022, 156: 113062. doi: 10.1016/j.lwt.2021.113062
    [36]
    张廷新, 李富强, 张楠, 等. 降糖肽的制备、生物学效应及其构效关系研究进展[J]. 食品工业科技, 2022, 43(8): 433-442.
    [37]
    董宇婷. 燕麦源α-glucosidase抑制肽与DPP-Ⅳ抑制肽的筛选及抑制机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 5-8.
    [38]
    JIANG M Z, YAN H, HE R H, et al. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment[J]. Eur Food Res Technol, 2018, 244(11): 1995-2005. doi: 10.1007/s00217-018-3111-7
    [39]
    WANG J, WU T, FANG L, et al. Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells[J]. J Funct Foods, 2020, 69: 103944.
    [40]
    WANG R C, ZHAO H X, PAN X X, et al. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein[J]. Food Sci Nutr, 2019, 7(5): 1848-1856. doi: 10.1002/fsn3.1038
    [41]
    吴彤. 核桃降血糖活性肽的分离纯化、结构鉴定及降血糖作用机理研究[D]. 长春: 吉林农业大学, 2020: 12-19.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return