FANG Yuan, LI Hui, WANG Libao, WAN Xihe, SHI Wenjun, YANG Zeyu, JIANG Qi, SHEN Hui, HU Runhao, GUAN Xiaoping, YANG Jiaxin. Study on bacterial community structure in rearing water in small greenhouse of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(3): 29-41. DOI: 10.12131/20220205
Citation: FANG Yuan, LI Hui, WANG Libao, WAN Xihe, SHI Wenjun, YANG Zeyu, JIANG Qi, SHEN Hui, HU Runhao, GUAN Xiaoping, YANG Jiaxin. Study on bacterial community structure in rearing water in small greenhouse of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(3): 29-41. DOI: 10.12131/20220205

Study on bacterial community structure in rearing water in small greenhouse of Litopenaeus vannamei

More Information
  • Received Date: July 24, 2022
  • Revised Date: December 13, 2022
  • Accepted Date: January 30, 2023
  • Available Online: February 06, 2023
  • In recent years, small greenhouse has been a hot model of Litopenaeus vannamei culture. In order to elucidate the structure and changes of the microbial community in the rearing water of L. vannamei culture in small greenhouse and explore the reasons for high yield and high efficiency of this model, we analyzed the composition and function of the microbial community on 2nd, 44th, 69th and 96th day of water in the small greenhouse based on 16S rRNA sequencing results. The results show that the richness and diversity of water microbial community at late stage of small greenhouse were significantly higher than those at early stage. During the whole culture process, the dominant bacteria at the phylum level were Proteobacteria, Bacteroidetes and Actinobacteria, among which the abundance of Proteobacteria increased significantly on 69th day, and the abundance of Actinobacteria increased at early stage but decreased at later stage. At genus level, the abundance of Candidatus_Aquiluna was the highest on 2nd day (28.7%). Marivita was enriched at middle stage, with the highest abundance on 69th day (9.94%). The abundance of Flavobacterium gradually increased with the culture time, reaching the highest on 96th day (11.63%). PICRUSt2 predicts the function of the microbial communities, and the abundances of metabolic function in the top 20 were significantly higher on 69th and 96th day than on 2nd day. In particular, the functions of terpenoids and polyketides metabolism, lipid metabolism, xenobiotics biodegradation and metabolism were highly enriched. Through FAPROTAX identifying, the abundance of chemoheterotrophy increased significantly at the late stage. The correlation analysis of environmental factors shows that total nitrogen (TN) and chemical oxygen demand (COD) had the greatest impacts on the microbial community structure in greenhouse model. Microorganisms such as Marivita, Candidatus_Aquiluna and Rhodopirellula played the roles in sequestration of carbon and reduction of nitrogen and phosphorus. In conclusion, under the high density and high nitrogen and phosphorus culture conditions, the water microbial community in the small greenhouse played an important role in maintaining the stability of water environment and enhancing the immunity and disease resistance of prawns.
  • [1]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22-24.
    [2]
    LU H J, CHEN W, LIU F K, et al. A genetic linkage map of the Pacific white shrimp (Litopenaeus vannamei): QTL mapping for low-temperature tolerance and growth-related traits and identification of the candidate genes[J]. Aquaculture, 2023, 562: 738834. doi: 10.1016/j.aquaculture.2022.738834
    [3]
    朱林, 车轩, 刘兴国, 等. 对虾工厂化养殖研究进展[J]. 山西农业科学, 2019, 47(7): 1288-1290, 1294. doi: 10.3969/j.issn.1002-2481.2019.07.42
    [4]
    徐树晨, 印方成. 华东地区温棚养殖南美白对虾情况调研分析[J]. 科学养鱼, 2021(3): 20-23. doi: 10.3969/j.issn.1004-843X.2021.03.012
    [5]
    李越蜀, 郑忠明, 翟海佳, 等. 不同模式凡纳滨对虾(Litopenaeus vannamei)养殖池塘沉积物酶活性及其微生物群落结构分析[J]. 海洋与湖沼, 2012, 43(6): 1254-1260. doi: 10.11693/hyhz201206032032
    [6]
    罗国栋, 鞠蓉, 陆俊杰, 等. 南美白对虾如东小棚养殖模式的应用及探索[J]. 水产研究, 2021, 8(3): 95-102.
    [7]
    ZHAO Q, XIE F X, ZHANG F F, et al. Analysis of bacterial community functional diversity in late-stage shrimp (Litopenaeus vannamei) ponds using Biolog EcoPlates and PICRUST2[J]. Aquaculture, 2022, 546: 737288. doi: 10.1016/j.aquaculture.2021.737288
    [8]
    SONG C, ZHONG L, LIU Y, et al. Spatial and temporal succession of bacterial communities in three artificial fishponds[J]. Aquac Res, 2019, 50(10): 2793-2801. doi: 10.1111/are.14231
    [9]
    ZHANG K, ZHENG X F, HE Z L, et al. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments[J]. Microb biotechnol, 2020, 13(5): 1597-1610. doi: 10.1111/1751-7915.13622
    [10]
    HU DONG, WANG L P, ZHAO R, et al. Core microbiome involved in nitrite removal in shrimp culture ponds[J]. Aquac Res, 2021, 53(5): 1663-1675.
    [11]
    ZHANG H, SUN Z L, LIU B, et al. Dynamic changes of microbial communities in Litopenaeus vannamei cultures and the effects of environmental factors[J]. Aquaculture, 2016, 455: 97-108. doi: 10.1016/j.aquaculture.2016.01.011
    [12]
    RODRIGO G, FERNANDA C, ALONSO A, et al. Doing more with less: a comparison of 16S hypervariable regions in search of defining the shrimp microbiota[J]. Microorganisms, 2020, 8(1): 134. doi: 10.3390/microorganisms8010134
    [13]
    HOU D W, HUANG Z J, ZENG S Z, et al. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment[J]. J Appl Microbiol, 2018, 125(3): 792-799. doi: 10.1111/jam.13919
    [14]
    HUANG F, PAN L Q, SONG M, et al. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health[J]. Appl Microbiol Biotechnol, 2018, 102(19): 8585-8598. doi: 10.1007/s00253-018-9229-5
    [15]
    LOUCA S, POLZ M F, MAZEL F, et al. Function and functional redundancy in microbial systems[J]. Nat Ecol Evol, 2018, 2(6): 936-943. doi: 10.1038/s41559-018-0519-1
    [16]
    邓波. 如东温棚对虾养殖模式与技术的优化[D]. 青岛: 中国海洋大学, 2015: 3.
    [17]
    李景, 陈昌福. 温棚高产养虾池中浮游植物群落与水化学因子特征[J]. 中国水产, 2015(7): 72-76. doi: 10.3969/j.issn.1002-6681.2015.07.034
    [18]
    刘军, 戴习林, 臧维玲. 凡纳滨对虾温棚高位池养殖密度及简易水质调控措施效果研究[J]. 上海海洋大学学报, 2016, 25(2): 189-197.
    [19]
    李春岭, 肖国娟, 孙绍永, 等. 利用冬季闲置小棚养殖海参试验[J]. 河北渔业, 2022(6): 15-16. doi: 10.3969/j.issn.1004-6755.2022.06.004
    [20]
    王仲淼. 罗氏沼虾小棚标粗池塘养殖模式与技术分析[J]. 科学养鱼, 2021(12): 31-32. doi: 10.3969/j.issn.1004-843X.2021.12.017
    [21]
    RAUL H P. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 2003, 226(1): 35-44.
    [22]
    STUART E J, LENNON J T. Dormancy contributes to the maintenance of microbial diversity[J]. P Natl Acad Sci USA, 2010, 107: 5881-5886.
    [23]
    HE Z, PAN L, ZHANG M, et al. Metagenomic comparison of structure and function of microbial community between water, effluent and shrimp intestine of higher place Litopenaeus vannamei ponds[J]. J Appl Microbiol, 2020, 129(2): 243-255. doi: 10.1111/jam.14610
    [24]
    宫晗, 陈萍, 秦桢, 等. 凡纳滨对虾工厂化循环水养殖系统水质指标及微生物菌群结构的分析[J]. 渔业科学进展, 2023, 44(1): 125-136.
    [25]
    COTTRELL M T, KIRCHMAN D L. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter[J]. Appl Environ Microb, 2000, 66: 1692-1697. doi: 10.1128/AEM.66.4.1692-1697.2000
    [26]
    SHU D T,  HE Y L,  YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technol, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072
    [27]
    BUENO D M C P, ZHOU J L,  THEROUX S,  et al. Methylphosphonate degradation and salt-tolerance genes of two novel halophilic marivita metagenome-assembled genomes from unrestored solar salterns[J]. Genes, 2022, 13(1): 148-148. doi: 10.3390/genes13010148
    [28]
    韩天骄, 徐武杰, 徐煜, 等. 停加红糖对凡纳滨对虾生物絮团养殖系统水质和氮收支的影响[J]. 南方水产科学, 2020, 16(6): 81-88. doi: 10.12131/20200052
    [29]
    EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1/2/3/4): 346-358.
    [30]
    STALOCH B E, NIERO H,  FREITAS R C D, et al. Draft genome sequence of Psychrobacter nivimaris LAMA 639 and its biotechnological potential[J]. Data brief, 2022, 41: 107927-107927. doi: 10.1016/j.dib.2022.107927
    [31]
    WANG A R,  RAN C,  WANG Y B, et al. Use of probiotics in aquaculture of China: a review of the past decade[J]. Fish Shellfish Immunol, 2019, 86: 734-755. doi: 10.1016/j.fsi.2018.12.026
    [32]
    LAI X F, CHEN J, LIANG S Y, et al. Effects of the probiotic Psychrobacter sp. B6 on the growth, digestive enzymes, antioxidant capacity, immunity, and resistance of Exopalaemon carinicauda to Aeromonas hydrophila[J]. Probiotics Antimicro, 2022: 1-8.
    [33]
    WILLIAMS T J, WILKINS D, LONG E, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics[J]. Environ Microbiol, 2013, 15: 1302-1317. doi: 10.1111/1462-2920.12017
    [34]
    ZHENG Y F, YU M,  LIU J W,  et al. Bacterial community associated with healthy and diseased pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages[J]. Front Microbiol, 2017, 8: 1362. doi: 10.3389/fmicb.2017.01362
    [35]
    王春忠, 林国荣, 严涛, 等. 长毛对虾海水养殖环境以及虾肠道微生物群落结构研究[J]. 水产学报, 2014, 38(5): 706-712.
    [36]
    RAIRAT T, CHUCHIRD N, KEETANON A, et al. Effects of dietary yeast-derived nucleotide and RNA on growth performance, survival, immune responses, and resistance to Vibrio parahaemolyticus infection in Pacific white shrimp (Litopenaeus vannamei)[J]. Aquac Rep, 2022, 27: 101352. doi: 10.1016/j.aqrep.2022.101352
    [37]
    SUN F L, WANG C Z, YANG H Q. Physicochemical factors drive bacterial communities in an aquaculture environment[J]. Front Environ Sci, 2021, 9: 709541. doi: 10.3389/fenvs.2021.709541
    [38]
    XUE Y M,  LI L,  DONG S L,  et al. The effects of different carbon sources on the production environment and breeding parameters of Litopenaeus vannamei[J]. Water, 2021, 13(24): 3584-3584. doi: 10.3390/w13243584
    [39]
    何树青, 李日美, 杨奇慧, 等. 锌对凡纳滨对虾生长、非特异性免疫指标、抗病力及肠道菌群结构的影响[J]. 水产学报, 2021, 45(10): 1726-1739.
    [40]
    RAY A J, LOTZ J M. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources[J]. Aquac Eng, 2014, 63: 54-61. doi: 10.1016/j.aquaeng.2014.10.001
    [41]
    ZHENG Y F, YU M, LIU Y, et al. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages[J]. Aquaculture, 2016, 451: 163-169. doi: 10.1016/j.aquaculture.2015.09.020
    [42]
    BOUWMAN L, GOLDEWIJK K K, HOEK K W V D, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900−2050 period[J]. Proc Natl Acad Sci, 2013, 110(52): 20882-20887. doi: 10.1073/pnas.1012878108
    [43]
    张家松, 段亚飞, 张真真, 等. 对虾肠道微生物菌群的研究进展[J]. 南方水产科学, 2015, 11(6): 114-119. doi: 10.3969/j.issn.2095-0780.2015.06.016
    [44]
    XIONG J B, ZHU J L, WANG K, et al. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation[J]. Microb Ecol, 2014, 67(2): 256-264. doi: 10.1007/s00248-013-0336-7
    [45]
    ZHANG D M, WANG X, XIONG J B, et al. Bacterioplankton assemblages as biological indicators of shrimp health status[J]. Ecol Indicators, 2014, 38: 218-224. doi: 10.1016/j.ecolind.2013.11.002
    [46]
    SUN F L, WANG Y S, WANG, C Z, et al. Insights intothe intestinal microbiota of several aquatic organisms and association with the surrounding environment[J]. Aquaculture, 2019, 507: 196-202. doi: 10.1016/j.aquaculture.2019.04.026
    [47]
    LIN G R, SUN F L, WANG C Z, et al. Assessment of the effect of enteromorpha prolifera on bacterial community structures in aquaculture environment[J]. PLoS One, 2017, 12(7): e0179792. doi: 10.1371/journal.pone.0179792
    [48]
    KANG I, LEE K, YANG S J, et al. Genome sequence of "Candidatus Aquiluna "sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an arctic fjord[J]. J Bacteriol, 2012, 194(13): 3550-3551. doi: 10.1128/JB.00586-12
    [49]
    JULIANA E D A, RODRIGO G T, VICTOR S P, et al. Genomic analysis reveals the potential for hydrocarbon degradation of Rhodopirellula sp. MGV isolated from a polluted Brazilian mangrove[J]. Braz J Microbiol, 2021, 52(3): 1-8.
    [50]
    LIN Y C, CHEN J C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels[J]. Aquaculture, 2003, 224: 193-201.
    [51]
    YANG S P, LUO J L, HUANG Y X, et al. Effect of sub-lethal ammonia and nitrite stress on autophagy and apoptosis in hepatopancreas of Pacific whiteleg shrimp Litopenaeus vannamei[J]. Fish Shellfish Immunol, 2022, 130: 72-78. doi: 10.1016/j.fsi.2022.08.069
    [52]
    HUANG M X, XIE J, YU Q R, et al. Toxic effect of chronic nitrite exposure on growth and health in Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture, 2020, 529: 735664. doi: 10.1016/j.aquaculture.2020.735664
    [53]
    BARBIERI E, BONDIOLI A C V, MELO C B, et al. Nitrite toxicity to Litopenaeus schmitti (Burkenroad, 1936, Crustacea) at different salinity levels[J]. Aquac Res, 2016, 47(4): 1260-1268. doi: 10.1111/are.12583
    [54]
    COCKBURN A, BRAMBILLA G, FERNÁNDEZ M L, et al. Nitrite in feed: from animal health to human health[J]. Toxicol Appl Pharm, 2013, 270(3): 209-217. doi: 10.1016/j.taap.2010.11.008
    [55]
    XIAO J, LUO S S, DU J H, et al. Transcriptomic analysis of gills in nitrite-tolerant and -sensitive families of Litopenaeus vannamei[J]. Comp Biochem Phys C, 2021, 253: 109212-109212.
    [56]
    胡东. 凡纳滨对虾养殖水体中亚硝酸盐转化的微生物特征与细菌菌群动态变化[D]. 厦门: 厦门大学, 2017: 73.
    [57]
    吴伟伦. 不同规格凡纳滨对虾对氨氮和亚硝酸盐耐受能力测试及分析[D]. 南京: 南京农业大学, 2020: 19.
    [58]
    FAN Y, WANG X L, WANG Y H, et al. Effect of dietary Bacillus licheniformis on growth, intestinal health, and resistance to nitrite stress in Pacific white shrimp Litopenaeus vannamei[J]. Aquac Int, 2021, 29(6): 2555-2573. doi: 10.1007/s10499-021-00764-9
  • Cited by

    Periodical cited type(9)

    1. 史银魁,俞立雄,周雪,高雷,朱峰跃,杨锦毅,陈大庆,王珂,段辛斌. 禁渔初期长江宜昌-城陵矶江段鱼类资源时空分布特征. 水生生物学报. 2024(04): 546-558 .
    2. 张丽媛,熊清海,田敏,刘淑伟,王慧,曲品,蒋荣明,杨剑虹. 阳宗海鱼类群落结构及变化. 云南农业大学学报(自然科学). 2024(02): 60-69 .
    3. 史艳萍,屈婵娟,许旺,周春花,梁璐,王宇翔,任文伟,戴年华,徐晓娟,黎栩霞,计勇,吴小平,金斌松. 基于环境DNA宏条形码的青岚湖自然保护区鱼类组成及分布特征. 中国环境监测. 2024(03): 235-246 .
    4. 曹寿清,杨思雅,胡江春,杨慕静. 泸沽湖小口裂腹鱼人工驯养繁育试验. 水产养殖. 2024(07): 44-47 .
    5. 张航,梁智策,匡晨亿,周婷,廖传松,苑晶,郭传波,刘家寿. 基于水声学和渔获物调查的洱海鱼类资源时空分布特征. 水生生物学报. 2024(12): 2029-2041 .
    6. 贾春艳,王珂,李慧峰,高雷,杨浩,刘绍平,陈大庆,段辛斌. 禁渔初期东洞庭湖鱼类资源的空间分布与密度变化. 南方水产科学. 2022(03): 48-56 . 本站查看
    7. 王书献,张胜茂,戴阳,王永进,隋江华,朱文斌. 利用声呐数据提取磷虾捕捞深度方法研究. 南方水产科学. 2021(04): 91-97 . 本站查看
    8. 梁祥,薛绍伟,武智,王静,张建斌,赖宝衡,胡智光. 云龙水库鱼类资源声学评估. 西南农业学报. 2021(09): 2057-2062 .
    9. 徐川,胡正春. 核电厂冷源安全渔业资源声学调查. 电力安全技术. 2020(10): 55-59 .

    Other cited types(2)

Catalog

    Article views (584) PDF downloads (112) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return